Answer:
C. Stress caused by a collision.........made the rock bend.
Turn the revolving turret (2) so that the lowest power objective lens (eg. 4x) is clicked into position.
Place the microscope slide on the stage (6) and fasten it with the stage clips.
Look at the objective lens (3) and the stage from the side and turn the focus knob (4) so the stage moves upward. Move it up as far as it will go without letting the objective touch the coverslip.
Look through the eyepiece (1) and move the focus knob until the image comes into focus.
Adjust the condenser (7) and light intensity for the greatest amount of light.
Move the microscope slide around until the sample is in the centre of the field of view (what you see).
Use the focus knob (4) to place the sample into focus and readjust the condenser (7) and light intensity for the clearest image (with low power objectives you might need to reduce the light intensity or shut the condenser).
When you have a clear image of your sample with the lowest power objective, you can change to the next objective lenses. You might need to readjust the sample into focus and/or readjust the condenser and light intensity. If you cannot focus on your specimen, repeat steps 3 through 5 with the higher power objective lens in place. Do not let the objective lens touch the slide!
When finished, lower the stage, click the low power lens into position and remove the slide.
Your microscope slide should be prepared with a coverslip over the sample to protect the objective lenses if they touch the slide.
Do not touch the glass part of the lenses with your fingers. Use only special lens paper to clean the lenses.
Always keep your microscope covered when not in use.
Always carry a microscope with both hands. Grasp the arm with one hand and place the other hand under the base for support.
Answer:
It has long been known that static pressure affects middle-ear function and conventional tympanometry uses variations in static pressure for clinical assessment of the middle ear. Middle-ear under-pressures tend to reduce the velocity magnitude more than do middle-ear over pressures.
The effect of middle-ear static pressure on the acoustic response of both structures is similar in that non-zero middle-ear static pressures generally reduce the velocity magnitude of the two membrane components in response to sound stimuli.
If you stay in the water for too long your hand will shrink
Answer:
the answer to this question is single nucleotide insertion that changes codon groupings
Explanation: