I would help but I'm not sure what you are asking for us to do
Answer: A translation 5 units down followed by a 180-degree counterclockwise rotation about the origin .
Step-by-step explanation:
From the given figure, the coordinates of ΔABC are A(-3,4), B(-3,1), C(-2,1) and the coordinates of ΔA'B'C' are A'(3,1), B'(3,4), C'(2,4).
When, a translation of 5 units down is applied to ΔABC, the coordinates of the image will be
Then applying 180° counterclockwise rotation about the origin, the coordinates of the image will be :-
which are the coordinates of ΔA'B'C'.
Hence, the set of transformations is performed on triangle ABC to form triangle A’B’C’ is " A translation 5 units down followed by a 180-degree counterclockwise rotation about the origin ".
Angle two would be 180-m<1
180-52= 128
Measurement of angle two is 128 degrees
Equation:
2x + 6 = 4x/2 + 12/2
To solve this, we need to transpose like terms to the same side.
2x - 4x/2 = 12/2 - 6
2x - 2x = 6 - 6
0 = 0
Since both sides are zero, it means that the equation has infinite number of solutions.