Answer:
Step-by-step explanation:
REcall the following definition of induced operation.
Let * be a binary operation over a set S and H a subset of S. If for every a,b elements in H it happens that a*b is also in H, then the binary operation that is obtained by restricting * to H is called the induced operation.
So, according to this definition, we must show that given two matrices of the specific subset, the product is also in the subset.
For this problem, recall this property of the determinant. Given A,B matrices in Mn(R) then det(AB) = det(A)*det(B).
Case SL2(R):
Let A,B matrices in SL2(R). Then, det(A) and det(B) is different from zero. So
.
So AB is also in SL2(R).
Case GL2(R):
Let A,B matrices in GL2(R). Then, det(A)= det(B)=1 is different from zero. So
.
So AB is also in GL2(R).
With these, we have proved that the matrix multiplication over SL2(R) and GL2(R) is an induced operation from the matrix multiplication over M2(R).
Answer:
Dimensions will be
Length = 7.23 cm
Width = 7.23 cm
Height = 9.64 cm
Step-by-step explanation:
A closed box has length = l cm
width of the box = w cm
height of the box = h cm
Volume of the rectangular box = lwh
504 = lwh

Sides which involve length and width and height, cost = 3 cents per cm²
Top and bottom of the box costs = 4 cents per cm²
Cost of the sides
= 3[2(l + w)h] = 6(l + w)h
= 3[2(l + w)h]

Cost of the top and the bottom
= 4(2lw) = 8lw
Total cost of the box C =
+ 8lw
=
+ 8lw
To minimize the cost of the sides


---------(1)


-------(2)
Now place the value of w from equation (1) to equation (2)


l³ = 378
l = ∛378 = 7.23 cm
From equation (2)


w = 7.23 cm
As lwh = 504 cm³
(7.23)²h = 504

h = 9.64 cm
Answer:
∠ 2 = 70°
Step-by-step explanation:
110° and ∠ 1 are corresponding angles and congruent, thus
∠ 1 = 110°
∠ 1 and ∠ 2 are adjacent angles and are supplementary, thus
∠ 2 = 180° - ∠ 1 = 180° - 110° = 70°