1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
2 years ago
6

The original price of a ski jacket was $220. It was on sale at a 25% discount. Arianna had a coupon for an additional 10% off th

e sale price.
Mathematics
1 answer:
lesya692 [45]2 years ago
4 0
220(original price) * 0.25 = 55(saleAmount)
salePrice = 165
165*0.1 = 16.5(CouponSavings)
165-16.5 = 148.5
The amount she spent on the jacket is $148.50
You might be interested in
78 * 40
Debora [2.8K]

Answer:

3120

Step-by-step explanation:

step 1:multiply 8 with 0 and 7 with 0

step 2:add a 0 in the end and multiply 8 with 4 . you get 32. take 2 and carry over 3. multiply 7 with 4. you get 28 . add 3 you get 31. now add. you get 3120

3 0
2 years ago
Read 2 more answers
How do you solve 7x-5=30?
Nadya [2.5K]
7x - 5 = 30

* add 5 to both sides

7x = 30 + 5

7x = 35

* divided both sides by 7

(7/7)x = 35/7

<u><em>x = 5</em></u>
8 0
2 years ago
Read 2 more answers
A ball is thrown from an initial height of 1 meter with an initial upward velocity of 15m/s. The ball's height h (in meters) aft
lakkis [162]

\bf \stackrel{\textit{ball's height}~\hfill }{\stackrel{\downarrow }{h}=1+15t-5t^2}\implies \stackrel{\textit{ball's height}~\hfill }{\stackrel{\downarrow }{6}=1+15t-5t^2}\implies 0=-5+15t-5t^2 \\\\\\ ~~~~~~~~~~~~\textit{using the quadratic formula} \\\\ \stackrel{\stackrel{a}{\downarrow }}{5}t^2\stackrel{\stackrel{b}{\downarrow }}{-15}t\stackrel{\stackrel{c}{\downarrow }}{+5}=0 \qquad \qquad t= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a}

\bf t=\cfrac{-(-15)\pm\sqrt{(-15)^2-4(5)(5)}}{2(5)}\implies t=\cfrac{15\pm\sqrt{225-100}}{10} \\\\\\ t=\cfrac{15\pm\sqrt{125}}{10}\implies t=\cfrac{15\pm\sqrt{5^2 \cdot 5}}{10}\implies t=\cfrac{\stackrel{3}{~~\begin{matrix} 15 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\pm ~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~\sqrt{5}}{\underset{2}{~~\begin{matrix} 10 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}

\bf t=\cfrac{3\pm \sqrt{5}}{2}\implies t= \begin{cases} \frac{3+ \sqrt{5}}{2} \approx 2.618\\\\ \frac{3- \sqrt{5}}{2}\approx 0.382 \end{cases}

8 0
2 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
2 years ago
4x-3y=10<br> x+2y=-14 <br><br> solve the equation using the linear combination method
mafiozo [28]
-2,-6 is the answer to the linear combination method 
6 0
2 years ago
Other questions:
  • WHAT IS THE LENGTH OF EF IN THE RIGHT TRIANGLE BELOW? answers are in the picture !
    14·2 answers
  • HELP ME ASAP! Will give BRAINLIEST! Please read the question THEN answer correctly! No guessing. Check ALL that apply.
    8·2 answers
  • Three times a number is the same as 28 more than 6 times the number. Find the number. If n is "the number," which equation could
    15·2 answers
  • You roll two dice. What is the probability that the average of the high and low roll is exactly 3, to four decimal places?
    14·1 answer
  • What is 3/5 of 60 students?
    11·1 answer
  • 5/2 = 11/x<br> What is x
    7·1 answer
  • Find the volume of the pyramid 12mm 7mm 10mm
    15·1 answer
  • Please help me now! (For the first and the second.)
    13·2 answers
  • Anybody know the awnser to number 4 and 5 please awnser fast if you know it
    5·1 answer
  • In triangle ABC, what is m and B<br><br> A. 30°<br> B. 40°<br> C. 75°<br> D. 85°
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!