1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
3 years ago
14

N which vertebrates did feathers first evolve?

Biology
1 answer:
Lapatulllka [165]3 years ago
3 0
<span>Wings have evolved several times independently. In flying fish, the wings are formed by the enlargement of the pectoral fins. Some fish leap out of the water and glide through the air, both to save energy and to escape predators. If they were already gliding, then any mutation that would result in an increase of the gliding surface would be advantageous to the fish that has it. These advantageous may allow these fish to out-compete the others. 

Wings have also evolved in bats, pterosaurs, and birds. In these animals, the wings are formed by the forelimbs. In some lizards that have evolved gliding flight, however, the "wings" or gliding surfaces may be quite different. The lizard Draco, for example, has gliding surfaces formed by an extension of the ribs. A number of extinct reptiles have similar gliding surfaces. Frogs that glide have expanded webbing on their hands and feet. Gliding ("flying") squirrels and marsupial sugar gliders have flaps of skin that lie between the front and rear limbs. These gliding animals all have one thing in common: a gliding surface that is formed by enlarging some parts of the body. 

In pterosaurs, the wing is formed by an elongated finger and a large skin membrane attached to this finger. In bats, the wing is formed by the entire hand, with skin membranes connecting the elongated fingers. In birds, flight feathers are attached to the entire forelimb, while the fingers have fused together. In all of these animals except birds, the wing is a solid structure. In birds, however, the wing is formed by a large number of individual feathers lying close to each other and each feather is in turn formed by filaments that interlock. 

Biophysicists have determined that flight most likely evolved from the tree down. That means most active flyers evolved flight from an animal that was already gliding. Gliding was therefore probably an indispensable intermediate stage in the evolution of flight. Since gliding has evolved in so many different groups of animals, it follows that the ancestors of birds, bats, and pterosaurs were almost certainly gliders. 

Unfortunately, the fossil records of the immediate gliding ancestors of birds, bats, and pterosaurs are all missing. The first known bat and bird fossils are recognizable as flyers. The same is true of pterosaurs. Therefore the origin of these flyers remain a mystery and a subject of often acrimonious debate. There are people who claim that dinosaurs evolved insulation, which then evolved into feathers, but the evidence for that is lacking. The so-called proto-feathers found on some dinosaurs are indistinguishable from the collagen fibers found in the skin of most vertebrates. Some of the supposedly feathered dinosaurs, such as Caudipteryx and Protarchaeopteryx, are actually flightless birds. The same is probably true of Microraptor fossils, which are (as Alan Feduccia says) probably "avian non-dinosaurs." 

Even though the immediate ancestor of birds remains a mystery, there is a fossil known as Longisquama insignis, which lived during the late Triassic. It has featherlike structures on its back. It was probably a glider of some sort. So, this animal may well be the distant ancestor of Archaeopteryx, the oldest known bird. 

In sum, flying almost certainly evolved from animals that were already gliding, or from the tree down, not from the ground up. The dinosaurian origin of birds requires that dinosaurs evolved feathers from insulation and flight to have evolved from the ground up. Both of these requirements are extremely unlikely to have occurred in evolutionary history, because dinosaurs are almost certainly ectothermic (or "cold-blooded") and therefore they never evolved insulation, and because feathers are too unnecessarily complex to have evolved as insulation. Flight from the ground up is also dangerous because large animals that attempt to fly from the ground may crash and seriously injure or even kill themselves. We all know how dangerous an airplane can be if it loses power and crashes. Small and light weight animals, OTOH, that were already gliding can survive if their attempt to fly fails. Finally, if flight evolved from gliding, then why do animals glide? The answer is that gliding is energetically much cheaper than to descend a tree, walk along the ground, and then climb up another tree. Besides, it is almost certainly much safer to glide from one tree to another than to be walking on the ground for many arboreal animals. 

See link below for details of why dinosaurs are considered ectothermic according to the available scientific evidence.</span>Source(s):<span>http://discovermagazine.com/1996/dec/aco...</span>
You might be interested in
Based on the arrows, what does the image represent?
Karolina [17]

Answer:

I think the answer is B i might be mistaken though c:

Explanation:

4 0
3 years ago
I would greatly appreaticate it if some can Please help me asap!!!
lozanna [386]

Answer: The taproot

Explanation: A deep taproot helps plants use moisture held in deeper soil layers, and they can have great drought resistance compared to fibrous-rooted plants. An example is honey mesquite (Prosopis juliflora), which is known to send its roots down 150 feet to get water.

8 0
3 years ago
At the end of cytokinesis, one parent cell becomes
I am Lyosha [343]

Answer:

At the end of cytokinesis , one parent cell becomes two identical daughter cells

3 0
2 years ago
How do species change to their environment
julsineya [31]
They find differnt ways to survive like food shelter hiding from preditors etc
6 0
3 years ago
In prokaryotes, how does the length of a typical monocistronic mRNA compare to the length of the protein generated from this mRN
Nastasia [14]

1. The correct answer is: a. There are more mRNA bases than amino acids.

The transcription of monocistronic mRNA in prokaryotes is a rare process (it is more characteristic for the eukaryotes). Monocistronic mRNA is RNA, which encodes for only one or specific protein. Three bases of mRNA encode one amino acid of protein, thus it has more bases than amino acids of the final product, protein.  

2. The correct statements are:  

The mRNA contains 5' and 3' untranslated regions.

The stop codon does not code for an amino acid.

The start site of transcription is upstream of the start codon.

Each codon contains 3 RNA bases.

All of these approve that more bases are in mRNA since not all of them are translated into amin oacids.

Other statements are hallmarks of eukaryotic RNA processing, and therefore not relevant to prokaryotes.

5 0
3 years ago
Other questions:
  • Which listed transfusion reaction is most often associated with transfused patient's lacking iga?
    8·1 answer
  • Please help with questions 9 and 10 !!!!!!!!!!
    14·1 answer
  • A few days ago. i've learned about eclipses.
    13·2 answers
  • Why is oxygen important for maintaining your muscles functions
    6·1 answer
  • Two hikers get lost in the woods, they have not brought any snacks or water with them. As time passes their insulin to glucagon
    7·1 answer
  • An egg is released from an ovary about once per month in a process called
    11·2 answers
  • What diseases is caused by a cold or flu?
    14·2 answers
  • What can you learn about by studying DNA?
    6·2 answers
  • Most of the genetic traits for an organism are on this type of chromosome?
    11·1 answer
  • Where does the hydrogen that is used in Stage 2 of photosynthesis come from?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!