DE = AB, EF = BC and AC = DF, hence triangle ABC is congruent to triangle DEF.
<h3>
Congruent shape</h3>
Two shapes are said to be congruent if they have the same shape, all their corresponding angles and sides are congruent to one another.
Given that DE = AB and BC = EF.
In right triangle DEF, using Pythagoras:
DF² = DE² + EF²
Also, In right triangle ABC, using Pythagoras:
AC² = AB² + BC²
But DE = AB and EF = BC, hence:
AC² = DE² + EF²
AC² = DF²
Taking square root of both sides, hence:
AC = DF
Since DE = AB, EF = BC and AC = DF, hence triangle ABC is congruent to triangle DEF.
Find out more on Congruent shape at: brainly.com/question/11329400
Answer:
0
Step-by-step explanation:
h(t) = (t + 3)² + 5, -5 ≤ t ≤ -1
The average rate of change is the change in h over the change in t.
(h(-1) − h(-5)) / (-1 − (-5))
= ((-1 + 3)² + 5 − ((-5 + 3)² + 5)) / (-1 + 5)
= (4 + 5 − 4 − 5)) / 4
= 0
If 4 lbs of potatoes cost 6.78...then 1 lbs of potatoes cost 6.78/4 = 1.695...rounds to 1.70 per lb
Answer:
about 1.56637 radians ≈ 89.746°
Step-by-step explanation:
The reference angle in radians can be found by the formula ...
ref angle = min(mod(θ, π), π -mod(θ, π))
Equivalently, it is ...
ref angle = min(ceiling(θ/π) -θ/π, θ/π -floor(θ/π))×π
<h3>Application</h3>
When we divide 11 radians by π, the result is about 3.501409. The fractional part of this quotient is more than 1/2, so the reference angle will be ...
ref angle = (1 -0.501409)π radians ≈ 1.56637 radians ≈ 89.746°
__
<em>Additional comment</em>
For calculations such as this, you need to use the most accurate value of pi available. The approximations 22/7 or 3.14 are not sufficiently accurate to give good results.