Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
- The numbers to the <u>right</u> of 0 are <u>positive</u>. The numbers to the <u>left</u> of 0 are <u>negative</u><u>.</u> 0 is neither positive nor negative.
The answer would be
F(x)=x^2-8x
Answer:
Step-by-step explanation:
Since the results for the standardized test are normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = test reults
µ = mean score
σ = standard deviation
From the information given,
µ = 1700 points
σ = 75 points
We want to the probability that a student will score more than 1700 points. This is expressed as
P(x > 1700) = 1 - P(x ≤ 1700)
For x = 1700,
z = (1700 - 1700)/75 = 0/75 = 0
Looking at the normal distribution table, the probability corresponding to the z score is 0.5
P(x > 1700) = 1 - 0.5 = 0.5