Answer:
<em>Hox </em>Gene
Explanation:
First, you're question is very vital, there are many ways in classifying along with identifying all living organisms that includes; morphological analysis, molecular systematics (studying the similarities and differences of the genetic data such in the sequences of DNA, RNA, and rRNA ), homology, cladistics, etc. based on phylogenetic tree, which the study of the evolutionary among various species.
But through it said that all living organisms shared one common ancestor. However, what makes them different from one to another is the homeotic genes that called <em>Hox </em>Genes; which specify the fate of a particular segment or region of the body, meaning the number and arrangements of the<em> Hox</em> genes varies considerably among different types of animals.
For instance, Sponges have at least one homologous to<em> Hox</em> genes, also insects have nine or more <em>Hox </em>genes resulting in multiple <em>Hox </em>genes occur in a cluster in which the genes are close to each other along a chromosome. Therefore, increases in the number of<em> Hox</em> genes have been instrumental in the evolution of many animals species with greater complexity in body structure.
Overall, more <em>Hox</em> genes, more complexity in body structure resulting in the differences of their morphological structure.
Hope that answered your question!
Answer: O many celled organisms
Explanation:
A. when evaluating a source for reliability, if they are talking about a product from a company that sponsors them they may not be honest, or if they are sponsored by a reliable company they can be trusted it depends what way you look at it.
Answer:
Answered below
Explanation:
Pepetidoglycans are the structural polymers which make up the cell walls of most bacteria.
It consists of the macromolecule, glycan chains, which are repeating N-acetylmuramic acid and N-acetylglucosamine residues. These glycan chains combine or cross-link with peptide side chains (proteins) to form a mesh-like layer outside the plasma membrane of most bacteria.
Peptidoglycan is the major structural component and the basic unit of the bacterial cell wall and provides protection to the cytoplasmic membrane, mechanical rigidity and also regulates the passage of fluid, amino acids, sugar and ions, in and out of the cell.
Emperor penguins leave and stay for winter months.