1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mumz [18]
4 years ago
7

Pls help me and can someone help be my touter

Mathematics
1 answer:
ELEN [110]4 years ago
6 0
Wouldn't it be 6 cm, 8 cm, 10 cm?
You might be interested in
Number patterns 54, 18, 6, 2, 2/3, what are the next 2 terms?
nikitadnepr [17]

Answer:

2/9, 2/27

Step-by-step explanation:

54, 18, 6, 2, 2/3

Take the second term and divide by the first

18/54 = 1/3

We multiply by 1/3

Check by taking the third term and dividing by the second

6/18 = 1/3

This works

Take the last term and multiply by 1/3

2/3*1/3 = 2/9

2/9*1/3 =2/27


4 0
3 years ago
I HAVE LOTS OF POINTS COMING FOR THE END OF ALL MY QUESTIONS SO PLEASE HELP OUT
Irina18 [472]

Answer:

1/5

Step-by-step explanation:

I think you go to the number 1 on the bottom and you go up 5 and there's your answer?

7 0
3 years ago
Read 2 more answers
Let an = –3an-1 + 10an-2 with initial conditions a1 = 29 and a2 = –47. a) Write the first 5 terms of the recurrence relation. b)
zlopas [31]

We can express the recurrence,

\begin{cases}a_1=29\\a_2=-47\\a_n=-3a_{n-1}+10a_{n-2}7\text{for }n\ge3\end{cases}

in matrix form as

\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}\begin{bmatrix}a_{n-1}\\a_{n-2}\end{bmatrix}

By substitution,

\begin{bmatrix}a_{n-1}\\a_{n-2}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}\begin{bmatrix}a_{n-2}\\a_{n-3}\end{bmatrix}\implies\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}^2\begin{bmatrix}a_{n-2}\\a_{n-3}\end{bmatrix}

and continuing in this way we would find that

\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-3&10\\1&0\end{bmatrix}^{n-2}\begin{bmatrix}a_2\\a_1\end{bmatrix}

Diagonalizing the coefficient matrix gives us

\begin{bmatrix}-3&10\\1&0\end{bmatrix}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}-5&0\\0&2\end{bmatrix}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}

which makes taking the (n-2)-th power trivial:

\begin{bmatrix}-3&10\\1&0\end{bmatrix}^{n-2}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}-5&0\\0&2\end{bmatrix}^{n-2}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}

\begin{bmatrix}-3&10\\1&0\end{bmatrix}^{n-2}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}(-5)^{n-2}&0\\0&2^{n-2}\end{bmatrix}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}

So we have

\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\begin{bmatrix}-5&2\\1&1\end{bmatrix}\begin{bmatrix}(-5)^{n-2}&0\\0&2^{n-2}\end{bmatrix}\begin{bmatrix}-5&2\\1&1\end{bmatrix}^{-1}\begin{bmatrix}a_2\\a_1\end{bmatrix}

and in particular,

a_n=\dfrac{29\left(2(-5)^{n-1}+5\cdot2^{n-1}\right)-47\left(-(-5)^{n-1}+2^{n-1}\right)}7

a_n=\dfrac{105(-5)^{n-1}+98\cdot2^{n-1}}7

a_n=15(-5)^{n-1}+14\cdot2^{n-1}

\boxed{a_n=-3(-5)^n+7\cdot2^n}

6 0
3 years ago
If Lamar follows the pattern below how many tiles will he need for his seventh figure the top one
elena55 [62]
The answer is D) 64 tiles
3 0
4 years ago
Read 2 more answers
The roots of the equation 2x^2 -12x+12 =-3
natta225 [31]

Answer

Step-by-step explanation  find the roots of the equation by solving for x

8 0
3 years ago
Other questions:
  • Sam
    8·1 answer
  • What’s 5/16 written as a decimal
    10·2 answers
  • The balloon has a radius of 6 what is the volume of the balloon
    9·1 answer
  • Solve for y. Please help!!
    7·1 answer
  • Choose the graph below that meets all three of the following requirements:
    14·2 answers
  • 28in.=_____ ft ‍ ‍ ‍ ‍ ‍ ‍
    14·1 answer
  • PLZ HELP WILL MARK BRAINLEST
    14·1 answer
  • Answer must be in fraction form. thanks
    10·1 answer
  • Pls help me I have to finish this!!!!!
    15·1 answer
  • Help me please with this question !!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!