1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lisa [10]
4 years ago
5

DO,K = (6, 12) (3, 6) The scale factor is

Mathematics
2 answers:
Lilit [14]4 years ago
6 0

Answer:

The scale factor is  \frac{1}{2}

Step-by-step explanation:

We need find the scale factor of provided DO,K = (6, 12) (3, 6)

Since, (6, 12) is 2 times of (3, 6)

⇒ (3, 6) is \frac{1}{2} times of (6, 12)

So, (3,6)=\frac{1}{2} (6,12)

Here, factor is \frac{1}{2}

tatiyna4 years ago
5 0
<span>DO,K = (6, 12) (3, 6) The scale factor is 1/2</span>
You might be interested in
Find the product of 20x9x5
Anestetic [448]
20 times 9 times 5 equals 900
5 0
3 years ago
Read 2 more answers
3) What is the difference? 7,840 - 4,971*<br> 0 2,769<br> 0 2,869<br> 0 2,879<br> 0 2,969
Flura [38]

Answer:

2869

Step-by-step explanation:

7,840 - 4,971

Subtract.

= 2869

3 0
3 years ago
Read 2 more answers
Angle α lies in quadrant II , and tanα=−125 . Angle β lies in quadrant IV , and cosβ=35 .
Artist 52 [7]

Answer:

cos(\alpha+\beta)=\frac{33}{65}

Step-by-step explanation:

step 1

Find cos α

we know that

tan^2(\alpha)+1=sec^2(\alpha)

we have

tan(\alpha)=-\frac{12}{5}

substitute

(-\frac{12}{5})^2+1=sec^2(\alpha)

sec^2(\alpha)=\frac{144}{25}+1

sec^2(\alpha)=\frac{169}{25}

sec(\alpha)=\pm\frac{13}{5}

Remember that Angle α lies in quadrant II

so

sec α is negative

sec(\alpha)=-\frac{13}{5}

Find the value of cos α

cos)\alpha)=\frac{1}{sec(\alpha)}

so

cos(\alpha)=-\frac{5}{13}

step 2

Find sin α

we know that

tan(\alpha)=\frac{sin(\alpha)}{cos(\alpha)}

sin(\alpha)=tan(\alpha)cos(\alpha)

we have

tan(\alpha)=-\frac{12}{5}

cos(\alpha)=-\frac{5}{13}

substitute

sin(\alpha)=(-\frac{12}{5})(-\frac{5}{13})

sin(\alpha)=\frac{12}{13}

step 3

Find sin β

we know that

sin^2(\beta)+cos^2(\beta)=1

we have

cos(\beta)=\frac{3}{5}

substitute

sin^2(\beta)+(\frac{3}{5})^2=1

sin^2(\beta)=1-(\frac{3}{5})^2

sin^2(\beta)=1-\frac{9}{25}

sin^2(\beta)=\frac{16}{25}

sin(\beta)=\pm\frac{4}{5}

Remember that

Angle β lies in quadrant IV

so

sin β is negative

sin(\beta)=-\frac{4}{5}

step 4

Find cos(α−β)

we know that

cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)

we have

cos(\alpha)=-\frac{5}{13}

cos(\beta)=\frac{3}{5}

sin(\alpha)=\frac{12}{13}

sin(\beta)=-\frac{4}{5}

substitute the given values

cos(\alpha+\beta)=(-\frac{5}{13})(\frac{3}{5})-(\frac{12}{13})(-\frac{4}{5})

cos(\alpha+\beta)=(-\frac{15}{65})+(\frac{48}{65})

cos(\alpha+\beta)=\frac{33}{65}

7 0
4 years ago
Please answer the question please
Natali5045456 [20]
The answer to ur problem is 1/3.
3 0
3 years ago
Please help me with this!
Rufina [12.5K]

Answer:

..............................................................................................................

Step-by-step explanation:

-2-4 -2+4

3 0
3 years ago
Other questions:
  • Houw would i factor this problem out completely?
    15·2 answers
  • 3 1/3+(-2 1\4)+1 5/6
    13·1 answer
  • Please help me.. im stuck​
    7·1 answer
  • A store sold 47 C batteries in a day. They sold 2 as many AAA batteries as C batteries and
    10·1 answer
  • Does anybody know how to do this
    6·2 answers
  • \sqrt{-100}=____+____i
    10·1 answer
  • Machine A covers 5/8 square feet in 1/4 hours or machine B covers 2/3 square feet in 1/5 hour.
    10·1 answer
  • For each pair of numbers, use l9ng division to calculate the quotient. Write quotients in fractional and decimal form. 5÷8
    11·1 answer
  • Please help!! I’ll give branliest!!!
    15·1 answer
  • Please help me with this math problem!! :)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!