1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
3 years ago
7

Glossaries are usually located at the front of a text or document

Advanced Placement (AP)
2 answers:
Nutka1998 [239]3 years ago
5 0

Answer:

false

Explanation:

Vikentia [17]3 years ago
3 0
Normally a glossary would be in the back of a book. Think of a textbook, there's normally a glossary in the back of the book.
You might be interested in
How can we calculate fracitons
Vaselesa [24]

Answer:

To find a common denominator, multiply each part of a fraction by the denominator of the other fraction. For example, to find a common denominator for 1/3 + 2/5, multiply the 1 and 3 by 5 and multiply the 2 and 5 by 3. You should get 5/15 + 6/15. Then you can calculate the fractions.

Explanation:

^^^

7 0
3 years ago
Match the values associated with this data set to their correct descriptions. {6, 47, 49, 15, 43, 41, 7, 36}quartile38.5median11
cluponka [151]
Answers:
1) The first quartile (Q₁) = 11 ;  2) The median = 38.5 ; 
3) The third quartile (Q₃) = 45 ;
4) The difference of the largest value and the median = 10.5 .
_______
Explanation: 

Given this data set with 8 (eight) values:  →  {6, 47, 49, 15, 43, 41, 7, 36};
→Rewrite the values in increasing order; to help us find the median, first quartile (Q,) and third quartile (Q₃) : → {6, 7, 15, 36, 41, 43, 47, 49}.
→We want to find; or at least match; the following 4 (four) values [associated with the above data set] — 38.5, 11, 10, 45 ;

1) The first quartile (Q₁);  2) The median;  3) The third quartile (Q₃); & 
4) The difference of the largest value and the median.

Note: Let us start by finding the "median". This will help us find the correct values for the descriptions in "Numbers 2 & 4" above.
The "median" would be the middle number within a data set, when the values are placed in smallest to largest (or, largest to smallest).  However, our data set contains an EVEN number [specifically, "8" (eight)] values. In these cases , we take the 2 (two) numbers closest to the middle, and find the "mean" of those 2 (two) numbers; and that value obtained is the median.  So, in our case, the 2 (two) numbers closest to the middle are:
"36 & 41".  To get the "mean" of these 2 (two) numbers, we add them together to get the sum; and then, we divide that value by "2" (the number of values we are adding):
→  36 + 41 = 77;  → 77/2 = 38.5 ; → which is the median for our data set; and is a listed value.
→Now, examine Description "(#4): The difference of the largest value and the median"—(SEE ABOVE) ;
→ We can calculate this value.  We examine the values within our data set to find the largest value, "49".  Our calculated "median" for our dataset, "38.5".  So, to find the difference, we subtract: 49 − 38.5 = 10.5 ; which is a given value".
→Now, we have 2 (two) remaining values, "11" & "45"; with only 2 (two) remaining "descriptions" to match;
 →So basically we know that "11" would have to be the "first quartile (Q₁)";  & that "45" would have to be the "third quartile (Q₃)".
→Nonetheless, let us do the calculations anyway.
→Let us start with the "first quartile";  The "first quartile", also denoted as Q₁, is the median of the LOWER half of the data set (not including the median value)—which means that about 25% of the numbers in the data set lie below Q₁; & that about 75% lie above Q₁.). 
→Given our data set:   {6, 7, 15, 36, 41, 43, 47, 49};
We have a total of 8 (eight) values; an even number of values. 
The values in the LOWEST range would be:  6, 7, 15, 36.
The values in the highest range would be:  41, 43, 47, 49.
Our calculated median is: 38.5 .  →To find Q₁, we find the median of the numbers in the lower range. Since the last number of the first 4 (four) numbers in the lower range is "36"; and since "36" is LESS THAN the [calculated] median of the data set, "38.5" ; we shall include "36" as one of the numbers in the "lower range" when finding the "median" to calculate Q₁
→ So given the lower range of numbers in our data set:  6, 7, 15, 36 ;
We don't have a given "median", since we have an EVEN NUMBER of values.  In this case, we calculate the MEDIAN of these 4 (four) values, by finding the "mean" of the 2 (two) numbers closest to the middle, which are "7 & 15".  To find the mean of "7 & 15" ; we add them together to get a sum; 
then we divide that sum by "2" (i.e. the number of values added up);
   → 7 + 15 = 22 ;  → 22 ÷ 2 = 11 ;  ↔ Q₁ = 11.
Now, let us calculate the third quartile; also known as "Q₃".
    Q₃ is  the median of the last half of the higher values in the set, not including the median itself.  As explained above, we have a calculated median for our data set, of 38.5; since our data set contains an EVEN number of values.  We now take the median of our higher set of values (which is Q₃). Since our higher set of values are an even number of values; we calculate the median of these 4 (four) values by taking the mean of the 2 (two) numbers closest to the center of the these 4 (four) values.  This value is Q₃.  →Given our higher set of values:  41, 43, 47, 49 ;  → We calculate the "median" of these 4 (four) numbers; by taking the mean of the 2 (two) numbers in the middle; "43 & 47".
 → Method 1): List the integers from "43 to 47" ;  → 43, 44, 45, 46, 47;
→ Since this is an ODD number of integers in sequential order;
→ "45" is not only the "median"; but also the "mean" of (43 & 47); 
thus, 45 = Q₃; 
→ Method 2):  Our higher set of values:  41, 43, 47, 49 ;
→ We calculate the "median" of these 4 (four) numbers; by taking the
"mean" of the 2 (two) numbers in the middle; "43 & 47";  We don't have a given "median", since we have an EVEN NUMBER of values.  In this case, we calculate the MEDIAN of these 4 (four) values, by finding the mean of the 2 (two) numbers closest to the middle, which are "43 & 47."  To find the mean of "43 & 47"; we add them together to get a sum; then we divide that sum by "2" (i.e. the number of values added);
→ 43 + 47 = 90 ;  → 90 ÷ 2 = 45 ;  → 45 = Q₃ .
4 0
3 years ago
Read 2 more answers
How should I come out as aromantic?
MatroZZZ [7]

Just be honest with them and everything will work out :)

8 0
3 years ago
What is 283376973484654894times 784394589417935
Lyrx [107]

Answer:

dawg what

Explanation:

you trippin trippin ong

5 0
1 year ago
Read 2 more answers
Read the following conversation between mother and child: Child: All gone. Mother: Is your juice all gone? Child: All gone. Moth
Amiraneli [1.4K]
A would be the right choice i think not really enough information.
7 0
3 years ago
Read 2 more answers
Other questions:
  • Rex is a young entrepreneur in his early 20s. He has stable employment with a good income. He has no plans to start a family and
    13·2 answers
  • How is needbased aid determined?
    6·2 answers
  • Write chemical formula for a molecule of noncyclic amp
    9·1 answer
  • Anytime you renew your car insurance, fail to renew it, cancel it, or the insurance company concels it, the insurance company mu
    13·1 answer
  • Why is abbreviated such a long word?
    13·1 answer
  • By all predictions, the developing world's population will grow much faster over the next several decades than the developed wor
    10·1 answer
  • The client of a veterinary practice is the
    11·1 answer
  • PLEASE HELP ME
    6·1 answer
  • What is 2 + 3 x 2+3 x 22 + 33 + 222 + 333 x 2,000 x 3,000
    11·2 answers
  • An oil refinery can refine about 20 gallons of gasoline from one barrel of crude oil. If an automobile has a fuel economy of 25
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!