The formula to finding a discriminant would be b^2-4ac, the b value of this trinomial being -5, the a value being 2, the c value being 3. Then, you plug the values in the equation and solve: (-5)^2-4(2)(3)
This would simplify to 1, meaning there are two solutions since the discriminant value is positive. If it is 0, there is one solution, if it is negative, then there are no real solutions.
Answer: y = 5y - (-2) < 17 =5y + 16
Three times the difference of a number n and 1
The equation may also have one common root or no real roots. This gives the maximum number of points where the parabola<span> intersect as </span>2<span>. ... When that is the case, the twp </span>parabolas<span> intersect at 4 </span>distinct<span> points. The maximum number of points of intersection of </span>two distinct parabolas<span> is 4.</span>
Answer:
what is this and give more info next time too
Step-by-step explanation: