X = 60 degrees.
A triangle is 180 degrees one side is 30 degrees, and another is 90(right angle)
180 - 30 - 90 = 60
Since m < 1 and m < 2 are complementary angles wherein the measure of their angles add up to 90°, we can establish the following equation:
m < 1 + m < 2 = 90°
x° + 48° + 2x° = 90°
Combine like terms:
48° + 3x° = 90°
Subtract 48° from both sides:
48° - 48° + 3x° = 90° - 48°
3x = 42°
Divide both sides by 3 to solve for x:
3x/3 = 42/3
x = 14°
Plug in the value of x into the equation to fins m< 1 and m < 2:
m < 1 + m < 2 = 90°
(14° + 48°) + 2(14)° = 90°
62° + 28° = 90°
90° = 90° (True statement)
Therefore:
m < 1 = 62°
m < 2 = 28°
Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

Im pretty sure it would be 4
Answer:
g(h(- 8)) = 119
Step-by-step explanation:
Evaluate h(- 8), then substitute the result obtained into g(x), that is
h(- 8) = (- 8)² - 2 = 64 - 2 = 62, then
g(62) = 2(62) - 5 = 124 - 5 = 119