Answer: 1859.5 mini bears
Step-by-step explanation:
From the information given in the question,
10 mini bars = 12.1 grams
10 regular bars = 23.1 gram
1 super bear = 2250 grams
To eat enough mini bears to match the super bears, the number that it'll take will be:
Since 10 mini bars = 12.1 grams
1 mini bear = 12.1 grams / 10 = 1.21 gram
Since 1 super bear = 2250 grams, the number of mini bears needed to equate this will be:
= 2250/1.21
= 1859.5 mini bears
Hello :
all n in N ; n(n+1)(n+2) = 3a a in N or : <span>≡ 0 (mod 3)
1 ) n </span><span>≡ 0 ( mod 3)...(1)
n+1 </span>≡ 1 ( mod 3)...(2)
n+2 ≡ 2 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 0×1×2 ( mod 3) : ≡ 0 (mod 3)
2) n ≡ 1 ( mod 3)...(1)
n+1 ≡ 2 ( mod 3)...(2)
n+2 ≡ 3 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 1×2 × 3 ( mod 3) : ≡ 0 (mod 3) , 6≡ 0 (mod)
3) n ≡ 2 ( mod 3)...(1)
n+1 ≡ 3 ( mod 3)...(2)
n+2 ≡ 4 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 2×3 × 4 ( mod 3) : ≡ 0 (mod 3) , 24≡ 0 (mod3)
Answer:
50 + 200h
Step-by-step explanation:
THE ANSWER IS THE SECOND AND THIRD CHOICE.