Hello!
Let's begin with question 1, 2a(x) · b(x) = ?
2(3x - 1) ·
· (6x - 2)
Question 2, a(x) + 2b(x) = ?
3x - 1 + 2(
)
Question 3,
= ?

Question 4, 2a(x) + b(x) = ?
2(3x - 1) +
6x - 2 + 
Question 5, a(x) - b(2x) = ?
3x - 1 - 
9514 1404 393
Answer:
y = -x +3
m = -1
b = 3
Step-by-step explanation:
To solve the given equation for y, divide by the coefficient of y.
(-3y)/(-3) = (3x -9)/(-3)
y = -x +3
__
The slope is the x-coefficient, M = -1.
__
The y-intercept is the added constant, B = 3.
__
Both equations are graphed in the attachment. Texture has been added to the original so you can see the graphs are the same line.
Answer:
One sqrt(7)*x -49sqrt(x)
Two -30sqrt(2)a
Right: - 3 cuberoot(2a)
Step-by-step explanation:
Left Questions
One
sqrt(7)x ((sqrt(x) - 7sqrt(7) ) Remove the Brackets
- sqrt(7x) * sqrt(x) - sqrt(7x) * 7sqrt(7)
- √(7*x)*sqrt(x) - 7*7*sqrt(x) Combine
- √7 (x) - 49x
This question has a a slight bit of ambiguity in it. Is the x outside the brackets underneath the root sign or not? I have taken it as not. Leave a note if I am wrong. <em><u>Edit</u></em>: This question clears itself when you use the original statement. I think it is correctly represented now. When you use √ you have to use brackets to show what is under the root sign.
Two
You can take a lot of common factors out side the brackets.
The common factors are 3*sqrt(2)*a When you do that, you are left with
- 3*sqrt(2)*a * ( 11 - 21)
- 3*sqrt(2)*a * (-10)
- The final answer is
- -30sqrt(2)*a
Of course there are other, more direct ways of doing this.
Right Question.
The problem here is answering in such a way that you are showing work.
Let z = 3∛(2a)
The problem now becomes
z*(1 - 2)
- z
Now substitute back
-3∛(2a) Answer
Answer:
9÷5=9/5
Step-by-step explanation:
This is true
Perpendicular lines = circumscribe
angle bisect = incircle
altitude = orthocenter
median = centriod