Answer:
40units²
Step-by-step explanation:
find the shapes you know the formula of. There's two shapes a rectangle and a trapezoid.
do the formula for rectangle
A = bh
A = 8×2
A = 16
Now the formula for Trapezoid
A = 1/2h(b+b)
A = 1/2×4(4+8)
A = 1/2×4(12)
A = 1/2(48)
A = 24
16+24 = 40
Hi there! You have to remember these 6 basic Trigonometric Ratios which are:
- sine (sin) = opposite/hypotenuse
- cosine (cos) = adjacent/hypotenuse
- tangent (tan) = opposite/adjacent
- cosecant (cosec/csc) = hypotenuse/opposite
- secant (sec) = hypotenuse/adjacent
- cotangent (cot) = adjacent/opposite
- cosecant is the reciprocal of sine
- secant is the reciprocal of cosine
- cotangent is the reciprocal of tangent
Back to the question. Assuming that the question asks you to find the cosine, sine, cosecant and secant of angle theta.
What we have now are:
- Trigonometric Ratio
- Adjacent = 12
- Opposite = 10
Looks like we are missing the hypotenuse. Do you remember the Pythagorean Theorem? Recall it!
Define that c-term is the hypotenuse. a-term and b-term can be defined as adjacent or opposite
Since we know the value of adjacent and opposite, we can use the formula to find the hypotenuse.
- 10²+12² = c²
- 100+144 = c²
- 244 = c²
Thus, the hypotenuse is:

Now that we know all lengths of the triangle, we can find the ratio. Recall Trigonometric Ratio above! Therefore, the answers are:
- cosine (cosθ) = adjacent/hypotenuse = 12/(2√61) = 6/√61 = <u>(6√61) / 61</u>
- sine (sinθ) = opposite/hypotenuse = 10/(2√61) = 5/√61 = <u>(5√61) / 61</u>
- cosecant (cscθ) is reciprocal of sine (sinθ). Hence, cscθ = (2√61/10) = <u>√61/5</u>
- secant (secθ) is reciprocal of cosine (cosθ). Hence, secθ = (2√61)/12 = <u>√</u><u>61</u><u>/</u><u>6</u>
Questions can be asked through comment.
Furthermore, we can use Trigonometric Identity to find the hypotenuse instead of Pythagorean Theorem.
Hope this helps, and Happy Learning! :)
Answer:


Step-by-step explanation:
<u>Equation Solving</u>
We are given the equation:
![\displaystyle x=\sqrt[3]{\frac{3y+16}{2y+9}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3y%2B16%7D%7B2y%2B9%7D%7D)
i)
To make y as a subject, we need to isolate y, that is, leaving it alone in the left side of the equation, and an expression with no y's to the right side.
We have to make it in steps like follows.
Cube both sides:
![\displaystyle x^3=\left(\sqrt[3]{\frac{3y+16}{2y+9}}\right)^3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%5E3%3D%5Cleft%28%5Csqrt%5B3%5D%7B%5Cfrac%7B3y%2B16%7D%7B2y%2B9%7D%7D%5Cright%29%5E3)
Simplify the radical with the cube:

Multiply by 2y+9

Simplify:

Operate the parentheses:


Subtract 3y and
:

Factor y out of the left side:

Divide by
:

ii) To find y when x=2, substitute:




