First, let us restate the given conditions
c is 5 more than variable a ( c = a + 5)
c is also three less than variable a (c = a - 3)
Now, lets look at the answer choices and or given
c = a − 5
c = a + 3
Here, c is 5 less than "a"...so automatically disqualified
a = c + 5
a = 3c − 3
Here, we have to get "C" by itself in both top and bottom equation.
So,
Simplified version :
c = a - 5
Here, c is 5 less than "a"...so automatically disqualified
a = c − 5
a = 3c + 3
Here also, we have to get "C" by itself in both top and bottom equation.
So,
simplified version:
c = a + 5
Here, c is 5 more than "a"...so we continue
c = (a - 3) / 3
Here, c is 3 less than "a" <u>divided by 3</u><u /> . So, this is not correct
c = a + 5
c = a − 3
Here, c is 5 more than "A"
Also, c is 3 less than "a"
Which satisfies the given.
So, our answer is going to be the last one:
c = a + 5
c = a - 3
Answer:
y - value of the vertex is 49.
Step-by-step explanation:
Given function is f(x) = -(x - 3)(x + 11)
f(x) = -(x² - 3x + 11x - 33)
= -(x² + 8x - 33)
= -(x² + 8x + 16 - 49)
= -[(x + 4)² - 49]
= -(x + 4)² + 49
Comparing this equation with the vertex form of a quadratic function,
f(x) = -(x - h)² + k
Where (h, k) is the vertex of the function.
Vertex of the parabola is (-4, 49)
Therefore, y-value of the vertex is 49.
Answer: 66 degrees
Explanation:
Check out the attached image below. Figure 1 is the original image without any additions or alterations. Then in figure 2, I extend segment BC to form a line going infinitely in both directions. This line crosses segment DE at point F as shown in the second figure.
Note how angles ABC and DFC are alternate interior angles. Because AB is parallel to DE (given by the arrow markers) this means angle DFC is also 24 degrees
Focus on triangle DFC. This is a right triangle. The 90 degree angle is at C.
So we know that the acute angles x and 24 are complementary. They add to 90. Solve for x
x+24 = 90
x+24-24 = 90-24
x = 66
That is why angle CDE is 66 degrees
5 1/6 divided by 2 5/12 is 2 4/29 so it is true