1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
4 years ago
12

Simplify the expression 111,000 × 0.072 using scientific notation and express your answer in scientific notation.

Mathematics
1 answer:
bonufazy [111]4 years ago
6 0
111,000x 72x10 exponentialized by -2
You might be interested in
There are 850 Douglas fir and Ponderosa pine trees in a section of forest bought by Karamazov Logging Co. The company paid an av
ki77a [65]

Answer:

350 Douglas fir, 500 Ponderosa pine

Step-by-step explanation:

 Let f = the number of fir trees

and p = the number of pine trees.

Then, we have two conditions:

(1)                                f + p = 850

(2)                  300f + 225p = 217 500

(3)                                    p = 850 -f         Subtracted f from each side of (1)

(4)       300f + 225(850 - f) = 217 500     Substituted (3) into (3)

      300f + 191 250 - 225f = 217 500     Distributed 225

                    75f + 191 250 = 217 500     Distributed the 7

                                    75f = 26 250      Subtracted 191 250 each side

(5)                                     f = 350

                             350 + p = 850           Substituted (5) into (1)

                                        p = 500          Subtracted 350 from each side

The company bought 350 fir trees and 500 pine trees.

Check:

(1) 350 + 500 = 850     (2) 300 × 350 + 225 × 500 = 217 500  

              850 = 850                  105 000 + 112 500 = 217 500

                                                                   217 500 = 217 500

OK.

8 0
3 years ago
How do I change my name on brainly? I'm on my phone
I am Lyosha [343]

Answer:

you just so to your account settings and then you just go to preferences and it will show you the option to change your name

Step-by-step explanation:

3 0
3 years ago
A box contains 10 genuine pearls and 5 artificial pearls. If you pick 3 pearls at random from the box. What is the probability t
Ivenika [448]
1/5th you take total amount over amount drawn
8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Simplify to a single power of 3<br><br><br><br> somebody help please
lbvjy [14]
Hello , 3 to the power 7 is the answer

6 0
3 years ago
Other questions:
  • What is -5+2 or whta is the value of (-5)+10-8+63?
    7·1 answer
  • I don't get this please help me
    9·2 answers
  • .072 divided by 345.000 round to the nearest tenth
    7·1 answer
  • Either use technology to find the P-value or use
    11·1 answer
  • 5. I need help with question in the attached picture!
    11·1 answer
  • Which equation can be used to find the volume of the cylinder?
    11·2 answers
  • . Isabella buys a 1.75 litre carton of apple juice. What is the largest number of 200 millilitre glasses that she can have from
    6·1 answer
  • 2. Which other expressionhas the same value as (-14)-(-8)? Explain your reasoning.
    11·1 answer
  • Choose the correct simplification and demonstration of the closure property given: (4x3 + 3x2 − 6x) − (10x3 + 3x2).
    14·2 answers
  • Please help me i need help!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!