Answer:
1. The cells in our bodies are surrounded by these types of solutions. → Isotonic solution.
3. When an animal cell is places in this solution, it will burst (get layer) → Hypotonic solution.
4. When an animal cell is placed in this solution, it will shrivel or shrink (get smaller) → Hypertonic solution.
5. This is a solution with more solute than the cell. Hypertonic solution.
Explanation:
The cells in the body are in a balance of substances —concentration of solutes— between their cytoplasm and the extracellular space. This balance is dynamic in living beings, due to the constant exchange of ions and substances between the intracellular and extracellular space. For this reason, the extracellular medium is isotonic with the cytoplasm.
<u>A cell can lose or gain water depending on the amount of solutes that a medium has in which it is found</u>, with respect to the cytoplasm. This difference in solutes concentrations produces an osmotic gradient that drags water from the least concentrated solution to the most concentrated, through the process of osmosis, which seeks to achieve an equilibrium of concentrations.
- <em>When a animal cell is exposed to a </em><em>hypertonic solution</em><em> </em>—<em>with a higher concentration of solutes</em>— <em>it loses water and tends to </em><em>dehydrate and become smaller</em><em>.</em>
- <em>An animal cell in a </em><em>hypotonic solution</em><em> receives water, so it can </em><em>expand and even burst</em><em>.</em>
In practice, the concentrations of intracellular and extracellular solutes depend not only on the osmotic gradient, but also on the concentration gradient of substances.
Answer:
D. 4E-BP1 binding to elF4E prevents loading of the mRNA onto the ribosome.
Explanation
In eukaryotic organisms, the eIF4E translation initiation factor functions by directing the ribosomes to the 5'-terminal cap structure of the messenger RNA (mRNA) in order to start the translation. Moreover, phosphorylation is a posttranslational modification of specific amino acids on proteins that play diverse cellular functions by altering protein stability, location, and/or enzymatic activity. It has been shown that elF4E phosphorylation is increased in response to cellular stimuli that induce translation in the ribosomes (e.g., growth factors, hormones, etc). The eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a repressor of mRNA translation which is phosphorylated and inactivated by growth factors and hormones, thereby inhibiting 4E-BP1 binding to elF4E and consequently activating translation.
Answer:
It occurs in the organelle ribosome which can either be located in the cytoplasm or in the rough endoplasmic reticulum
Explanation:
This is because the translation of mRNA into amino acids forms proteins and as we know the organelle ribosome is responsible for synthesizing proteins
Cholorplasts- site of lipid synthesis