7.779955 × 10 to the 4th power.
1. expand using place value.
337,060 = 300,000 + 30,000 + 7,000 + 000 + 60 + 0
Next, we will use exponents:
300,000 = 3 * 10^5
30,000 = 3 * 10^4
7,000 = 7 * 10^3
000 = 0 * 10^2
60 = 6 * 10
0 = 0 * 10^0
then after combing these exponents, we can write the number as:
337,060 = 3 * 10^5 + 3 * 10^4 + 7 * 10^3 + 0 * 10^2 + 6 * 10 + 0 * 10^0
Finally, removing the meaningless zeroes, we would end up with:
337,060 = 3 * 10^5 + 3 * 10^4 + 7 * 10^3 + 6 * 10
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
the figures are congruent because they have 3 congruent sides and three congruent angles
To start off, simplify the equation if needed:
3m>=21
Since both sides are divisible by 3, you can simplify for the equation to be
m>=7
Next is to find the domain of the line graph. Since the sign is more than or equal to (>=), the circle is closed.
And since m is MORE THAN OR EQUAL TO, the section starts at 7 (closed circle), and continues after. Therefore, your answer will be the third selection.