Answer:
probability at least one zero is 0.3439
Step-by-step explanation:
given data
last four digits = randomly selected
to find out
probability that for one such phone number the last four digits include at least one 0.
solution
we know there are total 10 digit
so we first find probability of non zero digit i.e.
Probability ( non zero ) = 9 /10 = 0.9
and now we find probability of none of digit zero only event happen n= 4 time in a row by multiplication rules i.e
Probability ( none zero in 4 digit ) = 
Probability ( none zero in 4 digit ) = 
Probability ( none zero in 4 digit ) = 0.6561
so we can say probability at least one zero = 1 - Probability ( none zero in 4 digit )
probability at least one zero = 1 - 0.6561
probability at least one zero is 0.3439
If scores on an exam follow an approximately normal distribution with a mean of 76.4 and a standard deviation of 6.1 points, then the minimum score you would need to be in the top 2% is equal to 88.929.
A problem of this type in mathematics can be characterized as a normal distribution problem. We can use the z-score to solve it by using the formula;
Z = x - μ / σ
In this formula the standard score is represented by Z, the observed value is represented by x, the mean is represented by μ, and the standard deviation is represented by σ.
The p-value can be used to determine the z-score with the help of a standard table.
As we have to find the minimum score to be in the top 2%, p-value = 0.02
The z-score that is found to correspond with this p-value of 0.02 in the standard table is 2.054
Therefore,
2.054 = x - 76.4 ÷ 6.1
2.054 × 6.1 = x - 76.4
12.529 = x - 76.4
12.529 + 76.4 = x
x = 88.929
Hence 88.929 is calculated to be the lowest score required to be in the top 2%.
To learn more about normal distribution, click here:
brainly.com/question/4079902
#SPJ4
Answer:
If they are asking about the y intercept then rearrange this as y=mx+c
so y=-4x+10
here 4 is the gradient and 10 is the y intercept
Step-by-step explanation: