A) 0 represents the surface of the pool.
B) The height of the pool is 10 above the pool surface
C) It should be -3 since it is going down so it is going to be a negative number and it is also below the pool's surface.
Answer:
4(4x1-16)
Hope this helps
Have a good day :)
PS I disibuted 4 to 4x1 to get 16 and 4 to -16 to get -64
Step-by-step explanation:
Answer:
x - 3 > 10
There were more than
13
board games in Anne's cabinet to start.
Step-by-step explanation:
The variable x represents how many board games were in Anne's cabinet to start. Since she has already picked out 3 board games to bring, the expression x–3 represents how many board games are still in the cabinet.
And, since Anne has more than 10 board games still in her cabinet, x–3 must be greater than 10.
This inequality shows the relationship.
x–3>10
Now, solve for x.
x–3
> 10
x–3+3
> 10+3 Add 3 to both sides
x
> 13 Simplify
So, there were more than 13 board games in Anne's cabinet to start.
Answer:
The probability is 0.31
Step-by-step explanation:
To find the probability, we will consider the following approach. Given a particular outcome, and considering that each outcome is equally likely, we can calculate the probability by simply counting the number of ways we get the desired outcome and divide it by the total number of outcomes.
In this case, the event of interest is choosing 3 laser printers and 3 inkjets. At first, we have a total of 25 printers and we will be choosing 6 printers at random. The total number of ways in which we can choose 6 elements out of 25 is
, where
. We have that 
Now, we will calculate the number of ways to which we obtain the desired event. We will be choosing 3 laser printers and 3 inkjets. So the total number of ways this can happen is the multiplication of the number of ways we can choose 3 printers out of 10 (for the laser printers) times the number of ways of choosing 3 printers out of 15 (for the inkjets). So, in this case, the event can be obtained in 
So the probability of having 3 laser printers and 3 inkjets is given by
