Answer:
x=4
Step-by-step explanation:
In order to solve for x, we must isolate x on one side of the equation.
x+3x+5=21
First, combine like terms. x and 3x are both terms with variables, and can be combined.
(x+3x) + 5=21
4x + 5=21
5 is being added to 4x. The inverse of addition is subtraction. Subtract 5 from both sides of the equation.
4x+5-5= 21-5
4x= 16
x is being multiplied by 4. The inverse of multiplication is division. Divide both sides by 4.
4x/4=16/4
x= 16/4
x=4
Let's check our solution. Plug 4 in for x and solve.
x+3x+5=21
4+3(4)+5=21
4+12+5=21
16+5=21
21=21
This solution checks out, so we know our answer is correct.
x is equal to 4, x=4.
The sequence forms a Geometric sequence as the rule to obtain the value for the next term is by ratio
Term 1: 1000
Term 2: 200
Term 3: 40
From term 1 to term 2, there's a decrease by

From term 2 to term 3, there's a decrease also by

The rule to find the

term in a sequence is

, where

is the first term in the sequence and

is the ratio
So, the formula for the sequence in question is

term =

The sequence is a divergent one. We can always find the value of the next term by dividing the previous term by 5 and if we do that, the value of the next term will get closer to 'zero' but never actually equal to zero.
We can find a partial sum of the sequence using the formula

for -1<r<1
Substituting

and

we have

=

= 1250
Hence, the correct option is option number 1
4 1/7 = (4*100) +(1/7 of 100)= (400+ 14.28)= 414.28
The answer is 414.28
Communicative prop of multiplication because the numbers are moving
Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
<h3>¿Qué es la distribución binomial?</h3>


Los parámetros son:
- n es el número de ensayos.
- p es la probabilidad de éxito en un ensayo
En este problema, hay que:
- 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
- Llegan 10 empleados, o sea, n = 10.
La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

En que:


Por eso:

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113