1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gizmo_the_mogwai [7]
4 years ago
5

The circumference of a sphere was measured to be 70 cm with a possible error of 0.5 cm. Use differentials to estimate the maximu

m error in the calculated volume. (Round your answer to the nearest integer.)What is the relative error? (Round your answer to three decimal places.)
Mathematics
1 answer:
saw5 [17]4 years ago
7 0

Answer:

Therefore the error in the calculated volume is 130 cm^3.

The relative error is 0.011.

Step-by-step explanation:

Given that,

The circumference of a sphere was 70 cm.

The circumference of a sphere is C= 2\pi r

C= 2\pi r

Differentiating with respect to r

\frac{dC}{dr}=2\pi

\Rightarrow \frac{\triangle C}{\triangle r}=2\pi

\Rightarrow\triangle r= \frac{\triangle C}{2\pi}

Given that,the circumference of the sphere was with possible error 0.5 cm.

\triangle C=0.5

\therefore \triangle r= \frac{0.5}{2\pi}

The volume of the sphere is V=\frac43 \pi r^3

V=\frac43 \pi r^3

Differentiating with respect to r

\frac{dV}{dr}=\frac43 \pi r^2

\Rightarrow \frac{\triangle V}{\triangle r}=\frac43 \pi r^2

\Rightarrow \triangle V}=\frac43 \pi r^2\times \triangle r}

Putting \triangle r=\frac{0.5}{2\pi}

\Rightarrow \triangle V}=\frac43 \pi r^2\times \frac{0.5}{2\pi}

\Rightarrow \triangle V}=\frac13 \pi r^2

\Rightarrow \triangle V}=\frac1{3} \pi (\frac C{2\pi})^2        [\because r=\frac C{2\pi}]

\Rightarrow \triangle V}=\frac1{1 2} \times \frac{C^2}{\pi}

\Rightarrow \triangle V}=\frac1{1 2} \times \frac{70^2}{\pi}        [ C=70 cm]

\Rightarrow \triangle V}\approx 130 \ cm^3

Therefore the error in the calculated volume is 130 cm^3.

Relative error =\frac{\triangle V}{V}

                     =\frac{\frac13 \pi (\frac{C}{2\pi})^2 }{\frac43 \pi (\frac C{2\pi})^3}

                     =\frac{1}{4  (\frac C{2\pi})}

                    =\frac{\pi }{4C}

                    \approx 0.011

The relative error is 0.011.

You might be interested in
The measure of two sides of a triangle are given. If the perimeter is 11x^2 - 29x + 10, find the measure of the third side. ​
bazaltina [42]

Answer:

I would say use photomath if you cant find your answer.

Step-by-step explanation:

5 0
3 years ago
Which unit of measurement would be appropriate for the volume of a sphere with a radius of 2 meters
Semenov [28]
The volume of a sphere is found with the following formula:

V = \frac{4}{3}\pi r^3

The radius is raised to a power of 3. Since the radius is 2 <em>meters</em>, this means that the volume would be measured in cubic meters.
3 0
3 years ago
Convert from scientific notation to standard form 4.83 x 10^-3
ANTONII [103]

4.83 x 10^-3 can be re-written in standard form by moving the decimal point 3 units to the left:   0.00483.

Note:  If you want to be mathematically correct, please write 10^(-3), not 10^-3.  If the exponent is +, you don't need the parentheses.


5 0
3 years ago
Six times a number is three thousand six hundread what is the number
Alecsey [184]
Divide 3600 by 6 and its 600
7 0
3 years ago
Read 2 more answers
A right square pyramid with base edges of length $8\sqrt{2}$ units each and slant edges of length 10 units each is cut by a plan
seropon [69]

Answer:

32 unit^{3}

Step-by-step explanation:

Given:

  • The slant length 10 units
  • A right square pyramid with base edges of length 8\sqrt{2}

Now we use  Pythagoras to get the slant height in the middle of each triangle:

\sqrt{10^{2 - (4\sqrt{2} ^{2} }) } = \sqrt{100 - 32} = \sqrt{68}  units

One again, you can use Pythagoras again to get the perpendicular height of the entire pyramid.

\sqrt{68-(4\sqrt{2} ^{2} )} = \sqrt{68 - 32} = 6 units.

Because slant edges of length 10 units each is cut by a plane that is parallel to its base and 3 units above its base. So we have the other dementions of the small right square pyramid:

  • The height 3 units
  • A right square pyramid with base edges of length 4\sqrt{2}

So the volume of it is:

V  = 1/3 *3* 4\sqrt{2}

= 32 unit^{3}

5 0
4 years ago
Other questions:
  • How much less than 3x^2−7x+9 is 2x^2+4x−8 ?<br> Thanks!!
    15·1 answer
  • I need to know how to do the problem
    9·1 answer
  • Professor Halen teaches a College Mathematics class. The scores on the midterm exam are normally distributed with a mean of 72.3
    9·1 answer
  • Fórmula para sacar el área de un circulo
    7·1 answer
  • 1. Which expression represents the following calculation?"Add 4 and 6, then multiply 5,then add 10.
    6·1 answer
  • -4x-16=2x+2 does anyone know what this would be
    7·2 answers
  • I really need help with this. don't do this for the points, please.
    12·1 answer
  • PLEASE HELPPP<br><br> Which expression is equivalent to
    15·1 answer
  • A small bag of chips contains 0.3 of a cup of sugar. if a large bag of chips is the same as 6.4 small bags, how much sugar does
    11·1 answer
  • 1) Consider the angle measurements. Which sides are congruent?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!