. The series is divergent. To see this, first observe that the series ∑ 1/kn for n = 1 to ∞ is divergent for any integer k ≥ 2.
Now, if we pick a large integer for k, say k > 100, then for nearly all integers n it will be true that 1 > cos(n) > 1/k. Therefore, since ∑ 1/kn is divergent, ∑ cos(n)/n must also be divergent The *summation* is divergent, but the individual terms converge to the number 0.<span>by comparison test since cosn/n <= 1/n is convergent
and 1/n is divergent by harmonic series
so the series is conditionally converget </span>
<h3>Answer: angle T = 70</h3>
======================================
Work Shown:
Quadrilateral RSTU is a kite. In geometry, any kite has two pairs of adjacent congruent sides. In this case, RU = RS is one pair of adjacent congruent sides (single tickmarks), while TU = TS is the other pair of adjacent congruent sides (double tickmarks).
Draw diagonal line segment TR. This forms triangles TUR and TSR.
Through the SSS (side side side) congruence theorem, we can prove that the two triangles TUR and TSR are congruent.
Then by CPCTC (corresponding parts of congruent triangles are congruent), we can say,
angle U = angle S = 90
--------------
Re-focus back on quadrilateral RSTU (ignore or erase line segment TR). The four angles of any quadrilateral will always add to 360 degrees. Let x be the measure of angle T.
(angleU)+(angleR)+(angleS)+(angleT) = 360
90+110+90+x = 360
290+x = 360
290+x-290 = 360-290 ... subtract 290 from both sides
x = 70
<h3>angle T = 70</h3>
TW x WU = CW x VW
Fill in the known values:
WU = TU - TW = 21.2 - 14.6 = 6.6
14.6 x 6.6 = 6 x VW
Simplify:
96.36 = 6VW
Divide both sides by 6:
VW = 96.36 / 6
VW = 16.06
Round to one decimal place:
VW = 16.1
The answer is D>
The answer would be 53. This can be found by add 127 twice (xy and uz) and subtracting it from 360. This would give you 106 and you would divide it by 2 for the 2 angles left and get the answer.