Answer:
A
Explanation:
compare it to carbon 12 I believe
3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85
pH + pOH =14
pOH = 14 - 3.85
pOH = 10.15
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
[OH-] = 10^-10.5
[OH-] = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
Answer:
Explanation:
number of moles = mass / molar mass
= 525 / 7+14+(3*14)
= 525 / 63
= 8.33 mol
This for metal......the farther to the left the more reactive they are. Group 1 metals, which include sodium and potassium, are so highly reactive that they do not exist in nature by themselves
Thats non metals..........the farther to the right the more reactive they are *with the exception of group 18* which are the noble gases and do not react at all. The most reactive are group 17, which include fluorine and chlorine. These non-metals, like group 1, rarely exist by themselves because of their high reactivity.