Answer:
The answer is 3.53
Step-by-step explanation:
The formula for a semicircle is pi x r2 divided by 2, so divide the diameter by 2, then plug that in as the radius into the formula.
Answer:
m=11÷600
Step-by-step explanation:
150m-100m+47.750=50.5000-200m
collect the like terms
-50m+47.75=50.5-200m
move variable to the left side and change its sign
-50m+200m+47.75=50.5
Move constant to the right side and change its sign
50m+200m=50.5-47.75
collect the like terms(again)
150m=50.5-47.75
subtract the numbers
150m=2.75
divied both sides of the equation by 150
m=11÷600
solution
m=11÷600
alternative form
m=0.0183
Answer:
4.8
Step-by-step explanation:
All you have to do is do 20% of 24.
For this case we have to, by defining properties of powers and roots the following is fulfilled:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We must rewrite the following expression:
![\sqrt [3] {8 ^ {\frac {1} {4} x}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D)
Applying the property listed we have:
![\sqrt [3] {8 ^ {\frac {1} {4} x}} = 8 ^ {\frac{\frac {1} {4} x} {3} }= 8 ^ {\frac {1} {4 * 3} x} = 8 ^ {\frac {1} {12} x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D%20%3D%208%20%5E%20%7B%5Cfrac%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%20%7B3%7D%20%7D%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%20%2A%203%7D%20x%7D%20%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D)
Using the property again we have to:
![8 ^ {\frac {1} {12} x} = \sqrt [12] {8 ^ x}](https://tex.z-dn.net/?f=8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D%20%3D%20%5Csqrt%20%5B12%5D%20%7B8%20%5E%20x%7D)
Thus, the correct option is option C
Answer:
Option C
Answer:
A'B' = 34 units
Step-by-step explanation:
Since the dilatation is centred at the origin , then multiply the coordinates by 2
A' = (2(0), 2(- 7) = (0, - 14 )
B' = (2(8), 2(8) = (16, 16)
Calculate the length using the distance formula
d = 
with (x₁, y₁ ) = A'(0, - 14) and (x₂, y₂ ) = B'(16, 16)
d = 
= 
= 
= 
= 34