To solve the question we shall use the formula for the range given by:
Horizontal range, R=[v²sin 2θ]/g
plugging in our values we get:
500=[160²×sin 2θ]/10
5000=160²×sin 2θ
0.1953=sin 2θ
thus:
arcsin 0.1953=2θ
11.263=2θ
hence:
θ=5.6315°~5.63
Use the law of cosines to solve for angle A. Plug your known side length values into the equation a^2 = b^2 + c^2 – 2bc cos A.
Then use the law of sines to find angle B. (Sin A/a = Sin B/b = Sin C/c).
Because the two red angles within B are congruent, divide your angle measure in half.
From there, do the law of sines to solve for x. Good luck!
I hopes this helps
Answer:
No solution
Step-by-step explanation:
21−7x=−7x−21−4
21−7x=−7x−25
21=−25
No solution