Answer:
SUMMARY:
→ Not a Polynomial
→ A Polynomial
→ A Polynomial
→ Not a Polynomial
→ A Polynomial
→ Not a Polynomial
Step-by-step explanation:
The algebraic expressions are said to be the polynomials in one variable which consist of terms in the form
.
Here:
= non-negative integer
= is a real number (also the the coefficient of the term).
Lets check whether the Algebraic Expression are polynomials or not.
Given the expression

If an algebraic expression contains a radical in it then it isn’t a polynomial. In the given algebraic expression contains
, so it is not a polynomial.
Also it contains the term
which can be written as
, meaning this algebraic expression really has a negative exponent in it which is not allowed. Therefore, the expression
is not a polynomial.
Given the expression

This algebraic expression is a polynomial. The degree of a polynomial in one variable is considered to be the largest power in the polynomial. Therefore, the algebraic expression is a polynomial is a polynomial with degree 5.
Given the expression

in a polynomial with a degree 4. Notice, the coefficient of the term can be in radical. No issue!
Given the expression

is not a polynomial because algebraic expression contains a radical in it.
Given the expression

a polynomial with a degree 3. As it does not violate any condition as mentioned above.
Given the expression


Therefore, is not a polynomial because algebraic expression really has a negative exponent in it which is not allowed.
SUMMARY:
→ Not a Polynomial
→ A Polynomial
→ A Polynomial
→ Not a Polynomial
→ A Polynomial
→ Not a Polynomial
Answer: 61.16 ft
Step-by-step explanation:
We can think in this situation as a triangle rectangle.
where:
The height of the tree is one cathetus
The shadow of the tree is the other cathetus.
We know that the angle of elevation of the sun is 78°, an angle of elevation is measured from the ground, then the adjacent cathetus to this angle is the shadow of the tree. And the opposite cathetus will be the height of the tree.
Now we can remember the relationship:
Tg(A) = (opposite cathetus)/(adjacent cathetus)
Where:
A = 78°
Adjacent cathetus = 13ft
opposite cathetus = height of the tree = H
Then we have the equation:
Tg(78°) = H/13ft
Tg(78°)*13ft = H = 61.16 ft
Answer:
Please find attached pdf
Step-by-step explanation:
Answer:
1780
Step-by-step explanation:
product means multiply
20x89=1780