Answer:
the answer is 6
Explanation:
In this case we would need to have a combination of each plant with each customer. So the variable would be in this way (3C X 2P)
Customer1 Customer2 Customer3
Plant1 P1C1 P1C2 P1C3
Plant2 P2C1 P2C2 P2C3
Once you have this you can calculate the best combination to minimize the cost of shipping
________________________________
<em>In a cap-and-trade system, </em><em><u>the </u></em><em><u>government</u></em><em> set(s) a regulatory cap (limit) on emissions and issue(s) pollution permits, and </em><em><u>polluters</u></em><em> can buy, sell, and trade these permits with others.</em>
<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>
<em>I</em><em>n</em><em> </em><em>a </em><em>cap </em><em>and </em><em>trade </em><em>system</em><em>,</em><em> </em><em>the </em><em>government</em><em> </em><em>sets </em><em>an </em><em>emissions</em><em> </em><em>cap </em><em>and </em><em>issues </em><em>a </em><em>quantity</em><em> </em><em>of </em><em>emission</em><em> </em><em>allowance</em><em>s</em><em> </em><em>consistent</em><em> </em><em>with </em><em>that </em><em>cap</em><em>.</em><em> </em><em>Emitters</em><em> </em><em>must </em><em>hold </em><em>allowances</em><em> </em><em>for </em><em>every </em><em>ton </em><em>of </em><em>greenhouse</em><em> </em><em>gas </em><em>they </em><em>emit</em><em>.</em><em> </em><em>Companies</em><em> </em><em>may </em><em>b</em><em>uy </em><em>and </em><em>sell </em><em>allowances,</em><em> </em><em>and </em><em>this </em><em>market </em><em>established</em><em> </em><em>an </em><em>emissions</em><em> </em><em>price</em><em>.</em>
<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>
Answer:
1/Oct : Cash (Dr.) $8,660
Accounts Receivable (Cr.) $8,660
10/Oct : Equipment & Supplies (Dr.) $9,660
Notes Payable (Cr.) $9,660
20/Oct : Accounts Receivable (Dr.) $2,640
Service Revenue (Cr.) $2,640
Explanation:
Debits $16,960
Cash 6,600
Accounts Receivable 1,840
Supplies 1,840
Equipment 4,660
Dividend 2,020
Credits : $16960
Accounts Payable 4,660
Notes Payable 9,660
Service Revenue 2,640
Answer:
D. Job specifications
Explanation:
Job specification -
It is the piece of information about the qualifications , strength , weakness and characteristics required in the person to take over a job or task .
hence , from the question , Nathan need to be aware about the job specifications , to select the candidate .
hence , from the given options , the correct term for the given information of the question is D. Job specifications .
Answer:
$1,901,385
Explanation:
First unit produced by lambda took 5,000 hours to produce and required $30,000 worth of materials and equipment usage.
The second unit took 4,500 hours and used $24,000 worth of materials and equipment usage.
learning rate = time needed to produce second unit / time needed to produce first unit = 4,500 hours / 5,000 hours = 90%
materials and equipment usage rate = $24,000 / $30,000 = 80%
using the attached table of cumulative values, we can determine the cumulative improvement factors needed to solve this question:
Olsan's accumulated cost for producing 20 more guidance controls
-
work hours = 4,500 x 14.61 (90% and 20 units) x $25 per hour = $1,643,625
- materials and equipment = $24,000 x 10.74 (95% and 20 units) = $257,760
- total = $1,901,385