Answer:
x²(9x– 11)(9x + 11)
Step-by-step explanation:
81x⁴ – 121x²
The expression can be factorised as follow:
81x⁴ – 121x²
x² is common to both term. Thus:
81x⁴ – 121x² = x²(81x² – 121)
Recall:
81 = 9²
121 = 11²
Therefore,
x²(81x² – 121) = x²(9²x² – 11²)
= x²[(9x)² – 11²]
Difference of two squares
x²(9x– 11)(9x + 11)
Therefore,
81x⁴ – 121x² = x²(9x– 11)(9x + 11)
50%
You have half of 6 so the percentage would be half of 100
E^2x -2e^x -8=0 => e<span>^(2x) -2e^x -8=0
Temporarily replace e^x with y.
Then (y)^2 - 2y - 8 = 0. Factors are (y-4) and (y+2).
Roots are y = 4 and y= -2.
Now remembering that we temporarily replaced e^x with y, we let
y=4 = e^x. We need to solve for x. Taking the natural log of both sides, we get:
ln 4 = x (answer)
We have to discard the other root (y= -2), because we cannot take the ln of a negative number.
</span>
Answer:
3
Step-by-step explanation: