This must double your chances so if i round the nearest whole number would be 8 any questions?
Answer:

Step-by-step explanation:
<u>Ratios
</u>
We are given the following relations:
![a=\sqrt{7}+\sqrt{c}\qquad \qquad[1]](https://tex.z-dn.net/?f=a%3D%5Csqrt%7B7%7D%2B%5Csqrt%7Bc%7D%5Cqquad%20%5Cqquad%5B1%5D)
![b=\sqrt{63}+\sqrt{d}\qquad \qquad[2]](https://tex.z-dn.net/?f=b%3D%5Csqrt%7B63%7D%2B%5Csqrt%7Bd%7D%5Cqquad%20%5Cqquad%5B2%5D)
![\displaystyle \frac{c}{d}=\frac{1}{9} \qquad \qquad [3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bc%7D%7Bd%7D%3D%5Cfrac%7B1%7D%7B9%7D%20%5Cqquad%20%5Cqquad%20%5B3%5D)
From [3]:

Replacing into [2]:

We can express 63=9*7:

Taking the square root of 9:

Factoring:

Find the ration a:b:

Simplifying:

You haven't provided the required roots, but I can tell you how to do this kind of exercises in general.
If the
coefficient is 1, i.e. the equation is written like
, then you can say the following about the coefficients b and c:
is the opposite of the sum of the roots
is the multiplication of the roots.
So, for example, if we want an equation whose roots are 4 and -2, we have:
So, the equation is 
If your roots are rational, you can work like this: suppose you want an equation with roots 3/4 and 1/2. You have:
And so the equation is

In order to have integer coefficients, you can multiply both sides of the equation by 8:

The conversion formula is f = (9/5) c + 32 [ The 95c is very confusing!]
(9/5)c = f - 32
Multiply both sides by 5/9:-
c = (5/9) ( f - 32)
That's option a).