It is with sperm and eggs, which are housed in spores in both species, so I’d say spores is the safest answer.
Answer:
Pfiesteria species generally found in estuaries, the population of which are needed to be controlled only when they becomes toxic. Presence of large of fish triggers toxicity in Pfiesteria.
Explanation:
Pfiesteria are known to be associated with fish kills as for example large fish kill in the seas of North Carolina. It also causes blooming of algae in enormous numbers thus make the water bodies, hostile for survival of fishes and other marine lives. It affects human too by release of toxins in air and water often resulting in respiratory problems, infections of gastrointestinal system, headaches and fatigue. In this type of grave circumstances, leading to outburst of population of Pfiesteria, there is an urgent need to control.
The answer is mitochondria.
The answer is scientific theory. It amalgamates scientific law about objects and events that are widely accepted and tested. Scientific theory rationalizes phenomenon, that is not rigorously understood, through science. Examples of scientific theories today are the special relativity theory of Albert Einstein.
Explanation:
- Light energy is absorbed and transferred to the reaction center.
- A water molecule is split.
- Electrons are transferred from photosystem II to photosystem I.
- ATP is synthesized from ADP and inorganic phosphate.
Further Explanation:
Photosynthesis is a chemical pathway that’s integral to producing energy in plants and other primary producers. Energy in the form of molecules of glucose is produced from light, water and carbon dioxide while oxygen is released. This occurs in several complex steps, photosynthesis is a rate limited reaction, depends on several factors including carbon dioxide concentration, ambient temperature and light intensity; the energy is retrieved from photons, I.e. particles of light, and water is used as a reducing agent. This occurs in the thykaloids, where pigment molecules like chlorophyll reside.
The chloroplast is a membrane bound organelle found in plants. It contains several invaginations of a plasma membrane called the thylakoid membrane. This contains chlorophyll pigments, in stacks called granum, while the internal spaces of the organelle are called the lumen. Liquid surrounds the granum, forming the stroma.
During the light reaction:
- Light is absorbed by pigments in phosystem II (PSII). This energy is transferred among pigments til it gets to the reaction center, and is transferred to P680; this promotes an electron to a higher energy level where it then goes to an acceptor molecule.
- Water supplies the chlorophyll in plant cell with replacement electrons for the ones removed from photosystem II. Additionally, water (H2O) split by light during photolysis into H+ and OH- acts as a source of oxygen along with functioning as a reducing agent.
- the electron moves down an electron transport chain (ti PS I)where it experiences continuous energy loss. This energy fuels the pumping of H+ from the stroma to thykaloid, leading to the formation of a gradient. The H+ move along their gradient and cross through ATP synthase, into the the stroma.
- ATP synthase converts ADP and Pi to the energy storage molecule ATP.
- The electron gets to photosystem I where it goes to pigments at P700. It absorbs light energy, the electron is promoted to a higher energy level, and passed to an electron acceptor. This leaves a space for another electron which is then replaced by one from photosystem II.
- in the ETC, the molecule NADP is reduced to NADPH by providing H+ ions. NADP and NADPH are integral to the Calvin cycle where monosaccharides or sugars like glucose are produced after the modification of several molecules.
Learn more about Photosynthesis at brainly.com/question/4216541
Learn more about cellular life at brainly.com/question/11259903
#LearnWithBrainly