Answer:
Recursive rule for arithmetic sequence = an = a[n-1] + 3
Step-by-step explanation:
Given arithmetic sequence;
-7, -4, -1, 2, 5, …
Find:
Recursive rule for arithmetic sequence;
Computation:
Let a1 = -7
So,
⇒ a2 = a1 + 3 = -4
⇒ a3 = a2 + 3 = -1
⇒ a4 = a3 + 3 = 2
⇒ a5 = a4 + 3 = 5
So, the recursive formula is
⇒ an = a[n-1] + 3
Recursive rule for arithmetic sequence = an = a[n-1] + 3
Answer:
?????
Step-by-step explanation:
A) Demand function
price (x) demand (D(x))
4 540
3.50 810
D - 540 810 - 540
----------- = -----------------
x - 4 3.50 - 4
D - 540
----------- = - 540
x - 4
D - 540 = - 540(x - 4)
D = -540x + 2160 + 540
D = 2700 - 540x
D(x) = 2700 - 540x
Revenue function, R(x)
R(x) = price * demand = x * D(x)
R(x) = x* (2700 - 540x) = 2700x - 540x^2
b) Profit, P(x)
profit = revenue - cost
P(x) = R(x) - 30
P(x) = [2700x - 540x^2] - 30
P(x) = 2700x - 540x^2 - 30
Largest possible profit => vertex of the parabola
vertex of 2700x - 540x^2 - 30
When you calculate the vertex you find x = 5 /2
=> P(x) = 3345
Answer: you should charge a log-on fee of $2.5 to have the largest profit, which is $3345.
4 km/h because 10-2 because of the 2 km left which =8 then you divide that by 2 to figure out the km per hour which = 4 so 4 km/h