The answer to this problem would be:
0.279 x 53 = 14.787
Answer:
1) 6x = 21
2) x + y - 3
3) x/z = y
4) 2-x = p
Step-by-step explanation:
1. The product of a number x and 6 is 21
A product is a multiplication. A product of a and b is a * b.
We then have a product of x and 6, that x * 6, which we write usually in the format 6x.
is 21: that means it's equal to 21....
so 6x = 21.
2. The sum of the quantity x- 3 and y
The sum is an addition. The sum of a and b is a + b.
In this case, the first part is x - 3, the second part is y
So, x - 3 + y, which we usually rewrite as x + y - 3
3. The quotient of x and z is y
A quotient is a division.
So, quotient of x and z is x/z.
x/z = y
4. The difference of 2 and x is p.
A difference is a subtraction.
Difference of 2 and x is 2 - x
2 - x = p
Given
P(1,-3); P'(-3,1)
Q(3,-2);Q'(-2,3)
R(3,-3);R'(-3,3)
S(2,-4);S'(-4,2)
By observing the relationship between P and P', Q and Q',.... we note that
(x,y)->(y,x) which corresponds to a single reflection about the line y=x.
Alternatively, the same result may be obtained by first reflecting about the x-axis, then a positive (clockwise) rotation of 90 degrees, as follows:
Sx(x,y)->(x,-y) [ reflection about x-axis ]
R90(x,y)->(-y,x) [ positive rotation of 90 degrees ]
combined or composite transformation
R90. Sx (x,y)-> R90(x,-y) -> (y,x)
Similarly similar composite transformation may be obtained by a reflection about the y-axis, followed by a rotation of -90 (or 270) degrees, as follows:
Sy(x,y)->(-x,y)
R270(x,y)->(y,-x)
=>
R270.Sy(x,y)->R270(-x,y)->(y,x)
So in summary, three ways have been presented to make the required transformation, two of which are composite transformations (sequence).