The cost of the ride varies by however many miles is driven, however the charging rate stays the same no matter how long the ride is. In the expression 0.20m + 2.00 , 2.00 is the constant as it stays the same, and 0.20 is the coefficient as is varies with however many miles are driven.
<span>This question is an annuity problem with cost of the car = $32,998, the present value of the annuity (PV) is given by the difference between the cost of the car and the down payment = $32,998 - $4,200 = $28,798. The monthly payments (P) = $525 and the number of number of years (n) = 5 years and the number of payments in a year (t) is 12 payments (i.e. monthly) The formula for the present value of an annuity is given by PV = (1 - (1 + r/t)^-nt) / (r/t) 28798 = 525(1 - (1 + r/12)^-(5 x 12)) / (r/12) 28798r / 12 = 525(1 - (1 + r/12)^-60) 28798r / (12 x 525) = 1 - (1 + r/12)^-60 2057r / 450 = 1 - (1 + r/12)^-60 Substituting option A (r = 37% = 0.37) 2057r / 450 = 2057(0.37) / 450 = 761.09 / 450 = 1.691 1 - (1 + r/12)^60 = 1 - (1 + 0.37/12)^-60 = 1 - 0.1617 = 0.8383 Therefore, r is not 37% Substituting option D (r = 3.7% = 0.037) 2057r / 450 = 2057(0.037) / 450 = 76.109 / 450 = 0.1691 1 - (1 + r/12)^60 = 1 - (1 + 0.037/12)^-60 = 1 - 0.8313 = 0.1687 Therefore, r is approximately 3.7%</span>
Add a and k to your graph have a nice day
Let's call:
f = price of 1 cup of dried fruit
a = price of 1 cup of almonds
In order to build the linear system, you need to consider that the total price of a bag is given by the sum of the price of cups times the number of cups in each bag, therefore:
![\left \{ {{3f + 4a = 6} \atop {41/2 f + 6a = 9 }} \right.](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7B3f%20%2B%204a%20%3D%206%7D%20%5Catop%20%7B41%2F2%20f%20%2B%206a%20%3D%209%20%7D%7D%20%5Cright.%20)
Solve for a in first equation:
a = (6 - 3f) / 4
Then substitute in the second equation:
41/2 f + 6 · (6 - 3f) / <span>4 = 9
41/2 f + 9 - 9/2 f = 9
16 f = 0
f = 0
Now, substitute this value in the formula found for a:
</span>a = (6 - 3·0) / <span>4
= 3/2 = 1.5
Hence, the cups of dried fruit are free and 1 cup of almond costs 1.5$</span>