Answer:
Therefore the value of 'y' is,

Step-by-step explanation:
Given:

To Find:
y= ?
Solution:
........Given
Step 1. Adding 50 to both the side we get

Step 2. Dividing by 10 on both the side we get

Therefore the value of 'y' is,

3/8 or three-eights of five team
Answer:
B=![\left[\begin{array}{ccc}0&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's do the multiplication AB.
If A=![\left[\begin{array}{ccc}1&0\\0&0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D)
then the first row of A is= (1 0) by the first column of B= (0 0) is equal to zero.
the first row of A is= (1 0) by the second column of B= (0 1) is equal to zero too because 1.0+0.1=0.
the second row of A is= (0 0) by any colum of B is equal to zero too.
So we have found an example that works!
Answer: cos(x)
Step-by-step explanation:
We have
sin ( x + y ) = sin(x)*cos(y) + cos(x)*sin(y) (1) and
cos ( x + y ) = cos(x)*cos(y) - sin(x)*sin(y) (2)
From eq. (1)
if x = y
sin ( x + x ) = sin(x)*cos(x) + cos(x)*sin(x) ⇒ sin(2x) = 2sin(x)cos(x)
From eq. 2
If x = y
cos ( x + x ) = cos(x)*cos(x) - sin(x)*sin(x) ⇒ cos²(x) - sin²(x)
cos (2x) = cos²(x) - sin²(x)
Hence:The expression:
cos(2x) cos(x) + sin(2x) sin(x) (3)
Subtition of sin(2x) and cos(2x) in eq. 3
[cos²(x)-sin²(x)]*cos(x) + [(2sen(x)cos(x)]*sin(x)
and operating
cos³(x) - sin²(x)cos(x) + 2sin²(x)cos(x) = cos³(x) + sin²(x)cos(x)
cos (x) [ cos²(x) + sin²(x) ] = cos(x)
since cos²(x) + sin²(x) = 1