Answer:
12/2 38 92/5a 2b
Step-by-step explanation:
This problem involves finding arc lengths. The formula for arc length
is s = r*theta, where r is the radius and theta the central angle.
In 15 minutes, the minute hand sweeps out 1/4 of a circle, or pi/2 radians. This is the central angle. The arc length (how far the minute hand moves in 15 min) is then
s = (6 inches)(pi/2 rad) = 3pi inches, or about 9.42 inches.
25 minutes is equivalent to a central angle of (25/60)pi rad, or 1.31 radians. What is the associated arc length? Calculate this in the same way as I did for a central angle of pi/2.
Answer:c
Step-by-step explanation:
Answer: y=9
Step-by-step explanation:
Answer:
Step-by-step explanation:
3D space (x, y, z) = (10, 45, 57)
I will use x² + y² = (2D Hyp)² and (2D Hyp)² + z² = (3D Hyp)²
which is just x² + y² + z² = (3D Hyp)²
10² + 45² + 57² = (3D Hyp)²
100 + 2025 + 3249 = 5374 = (3D Hyp)² the destance from the origin
= 73.31 the destance from the origin