We are asked to determine the lengths of the line segment drawn with these points as endpoints. The equation of the distance between points is,
d = sqrt ((y2 - y1)² + (x2 - x1)²)
Substituting the coordinates of the points,
d = sqrt ((14 - 9)² + (4 - 2)²)
The numerical value for d is approximately 5.39.
Can u write it ????so i'll solve it asap
Answer:
Step-by-step explanation:
b.

d.

e.
![\frac{2x^2-10x+12}{x^2-4} *\frac{2+x}{3-x} \\=\frac{2[x^2-5x+6]}{x^2-2^2} *\frac{2+x}{-(-3+x)} \\=\frac{2[x^2-2x-3x+6]}{(x+2)(x-2)} *\frac{x+2}{-(x-3)} \\=\frac{2[x(x-2)-3(x-2)]}{(x+2)(x-2)} *\frac{x+2}{-(x-3)} \\=\frac{2(x-2)(x-3)}{(x+2)(x-2)} *\frac{x+2}{-(x-3)} \\=\frac{2}{-1} \\=-2](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E2-10x%2B12%7D%7Bx%5E2-4%7D%20%2A%5Cfrac%7B2%2Bx%7D%7B3-x%7D%20%5C%5C%3D%5Cfrac%7B2%5Bx%5E2-5x%2B6%5D%7D%7Bx%5E2-2%5E2%7D%20%2A%5Cfrac%7B2%2Bx%7D%7B-%28-3%2Bx%29%7D%20%5C%5C%3D%5Cfrac%7B2%5Bx%5E2-2x-3x%2B6%5D%7D%7B%28x%2B2%29%28x-2%29%7D%20%2A%5Cfrac%7Bx%2B2%7D%7B-%28x-3%29%7D%20%5C%5C%3D%5Cfrac%7B2%5Bx%28x-2%29-3%28x-2%29%5D%7D%7B%28x%2B2%29%28x-2%29%7D%20%2A%5Cfrac%7Bx%2B2%7D%7B-%28x-3%29%7D%20%5C%5C%3D%5Cfrac%7B2%28x-2%29%28x-3%29%7D%7B%28x%2B2%29%28x-2%29%7D%20%2A%5Cfrac%7Bx%2B2%7D%7B-%28x-3%29%7D%20%5C%5C%3D%5Cfrac%7B2%7D%7B-1%7D%20%5C%5C%3D-2)
k.

Answer:
YZ=16
Step-by-step explanation:
Because they are parallel
(0,-3) because that’s what it is