Answer:
The probability that there are 3 or less errors in 100 pages is 0.648.
Step-by-step explanation:
In the information supplied in the question it is mentioned that the errors in a textbook follow a Poisson distribution.
For the given Poisson distribution the mean is p = 0.03 errors per page.
We have to find the probability that there are three or less errors in n = 100 pages.
Let us denote the number of errors in the book by the variable x.
Since there are on an average 0.03 errors per page we can say that
the expected value is, = E(x)
= n × p
= 100 × 0.03
= 3
Therefore the we find the probability that there are 3 or less errors on the page as
P( X ≤ 3) = P(X = 0) + P(X = 1) + P(X=2) + P(X=3)
Using the formula for Poisson distribution for P(x = X ) =
Therefore P( X ≤ 3) =
= 0.05 + 0.15 + 0.224 + 0.224
= 0.648
The probability that there are 3 or less errors in 100 pages is 0.648.
The shaded area would be 2 because there is a whole square shaded in the the other two are 1/2 so if you add 1/2 together with another 1/2 plus the whole shaded square you would get two.
At least that’s what I understood from the question
Answer:
I think its. u must check with calculator
Answer:
The answer is 1.75
Step-by-step explanation:
2-1/5 or (.25)
Can you restate the question please