Answer:
, ![y=\frac{127}{31}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B127%7D%7B31%7D)
Step-by-step explanation:
<h3>
I will use the elimination method.</h3>
We want to make the X's the same:
![24x-15y=45](https://tex.z-dn.net/?f=24x-15y%3D45)
![24x+16y=172](https://tex.z-dn.net/?f=24x%2B16y%3D172)
Because the signs of the X's are the same we subtract the 2 equations to make:
(I put the second one on top of the 1st)
![31y=127](https://tex.z-dn.net/?f=31y%3D127)
So:
![y=\frac{127}{31}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B127%7D%7B31%7D)
Substitute y into either equation 1 or 2:
(I chose equation 1)
![8x-5(\frac{127}{31})=15](https://tex.z-dn.net/?f=8x-5%28%5Cfrac%7B127%7D%7B31%7D%29%3D15)
![8x=5(\frac{127}{31}) + 15](https://tex.z-dn.net/?f=8x%3D5%28%5Cfrac%7B127%7D%7B31%7D%29%20%2B%2015)
![x=\frac{5(\frac{127}{31})}{8}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B5%28%5Cfrac%7B127%7D%7B31%7D%29%7D%7B8%7D)
So:
![x=\frac{275}{62}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B275%7D%7B62%7D)
Answer
Secured
Step-by-step explanation:
eee
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
So 16 integers.
![x^2+\dfrac1{x^2}=3\implies x^4+1=3x^2\implies x^4-3x^2+1=0](https://tex.z-dn.net/?f=x%5E2%2B%5Cdfrac1%7Bx%5E2%7D%3D3%5Cimplies%20x%5E4%2B1%3D3x%5E2%5Cimplies%20x%5E4-3x%5E2%2B1%3D0)
By the quadratic formula,
![x^2=\dfrac{3\pm\sqrt5}2\implies x^2+1=\dfrac{5\pm\sqrt5}2](https://tex.z-dn.net/?f=x%5E2%3D%5Cdfrac%7B3%5Cpm%5Csqrt5%7D2%5Cimplies%20x%5E2%2B1%3D%5Cdfrac%7B5%5Cpm%5Csqrt5%7D2)
Then
![(x^2+1)^2=\dfrac{25\pm10\sqrt5+5}4=\dfrac{15\pm5\sqrt5}2](https://tex.z-dn.net/?f=%28x%5E2%2B1%29%5E2%3D%5Cdfrac%7B25%5Cpm10%5Csqrt5%2B5%7D4%3D%5Cdfrac%7B15%5Cpm5%5Csqrt5%7D2)
![\implies\dfrac{x^2}{(x^2+1)^2}=\dfrac{\frac{3\pm\sqrt5}2}{\frac{15\pm5\sqrt5}2}=\dfrac{3\pm\sqrt5}{15\pm5\sqrt5}](https://tex.z-dn.net/?f=%5Cimplies%5Cdfrac%7Bx%5E2%7D%7B%28x%5E2%2B1%29%5E2%7D%3D%5Cdfrac%7B%5Cfrac%7B3%5Cpm%5Csqrt5%7D2%7D%7B%5Cfrac%7B15%5Cpm5%5Csqrt5%7D2%7D%3D%5Cdfrac%7B3%5Cpm%5Csqrt5%7D%7B15%5Cpm5%5Csqrt5%7D)
Multiply numerator and denominator by the denominator's conjugate:
![\dfrac{3\pm\sqrt5}{15\pm5\sqrt5}\cdot\dfrac{15\mp5\sqrt5}{15\mp5\sqrt5}=\dfrac{45\pm15\sqrt5\mp15\sqrt5-25}{15^2-(5\sqrt5)^2}=\dfrac{20}{100}=\dfrac15](https://tex.z-dn.net/?f=%5Cdfrac%7B3%5Cpm%5Csqrt5%7D%7B15%5Cpm5%5Csqrt5%7D%5Ccdot%5Cdfrac%7B15%5Cmp5%5Csqrt5%7D%7B15%5Cmp5%5Csqrt5%7D%3D%5Cdfrac%7B45%5Cpm15%5Csqrt5%5Cmp15%5Csqrt5-25%7D%7B15%5E2-%285%5Csqrt5%29%5E2%7D%3D%5Cdfrac%7B20%7D%7B100%7D%3D%5Cdfrac15)
Answer:
GI or HJ
Step-by-step explanation:
Diagonals connect non-adjacent vertices.
That is, the diagonal with G as an endpoint will not connect to vertices H or J, but will connect to vertex I. Likewise the diagonal with H as one end will have J as the other end. A quadrilateral has only two (2) diagonals. Of course, each can be named two ways:
GI or IG
HJ or JH