Answer:
3.26
Step-by-step explanation:
if there is a five you round it up too 3.26
The question is asking what v_final is, given that v_initial is at 300 feet. and v_initial is at 0 feet.
We know there will be a constant downward acceleration of 32.15 ft/s^2.
Use the following equation:
v_final^2 = v_initial^2 + 2ah
v_final^2 = (160 ft/s)^2 + 2(-32.15 ft/s^2)(300 ft) = 6310 ft^2/s^2
v_final = (6310 ft^2/s^2)^1/2 = 79.4 ft/s.
<u><em>Answer:</em></u>
SAS
<u><em>Explanation:</em></u>
<u>Before solving the problem, let's define each of the given theorems:</u>
<u>1- SSS (side-side-side):</u> This theorem is valid when the three sides of the first triangle are congruent to the corresponding three sides in the second triangle
<u>2- SAS (side-angle-side):</u> This theorem is valid when two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
<u>3- ASA (angle-side-angle):</u> This theorem is valid when two angles and the included side between them in the first triangle are congruent to the corresponding two angles and the included side between them in the second triangle
<u>4- AAS (angle-angle-side):</u> This theorem is valid when two angles and a side that is not included between them in the first triangle are congruent to the corresponding two angles and a side that is not included between them in the second triangle
<u>Now, let's check the given triangles:</u>
We can note that the two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle
This means that the two triangles are congruent by <u>SAS</u> theorem
Hope this helps :)
Answer:
<h3>-700</h3>
Step-by-step explanation: