Answer:
The concentration of HA is the same as concentration of H3O+ and A- produced.
Explanation:
The dissociation equation is given below:
HA(aq) + H2O (l) —> H3O+(aq) + A-(aq)
From the reaction above, we can see that the acid is monoprotic acid i.e it has only 1 ionisable hydrogen atom.
Now, from the balanced equation, we can see that the acid produced equal concentration of H3O+ and A-.
This account for the reason why the bars for H3O+ and A- have the same height as the bar for HA.
In order to answer this question, the units of volume must be consistent. In this problem, we decide the unit m3 to be uniform. Option A is equal to 12 m3, option b is equal to 1.2x10^8/100^3 or 120 m3. Option C is 2.0 x10^4/ 10^3 or 20 m3. Option D is 1.2x10^8/ 1000^3 or 0.12 m3. The greatest volume is option b. 120 m3.
<h3>Sulfate takes two Copper atoms and gains negative valence charge,whereas the Copper gains a positive valence charge.The Sulfate is bonded in covalent bonds of polarity, Oxygen having the higher electronegativity, and therefore pulling the electrons closer to it's nucleus than to Sulfur's nucleus.</h3>
T₁ = 50,14 K.
p₁ = 258,9 torr.
T₂ = 161,2 K.
p₂ = 277,5 torr.
R = 8,314 J/K·mol.
Using Clausius-Clapeyron equation:
ln(p₁/p₂) = - ΔHvap/R · (1/T₁ - 1/T₂).
ln(258,9 torr/277,5 torr) = -ΔHvap/8,314 J/K·mol · (1/50,14 K - 1/161,2 K).
-0,069 = -ΔHvap/8,314 J/K·mol · (0,0199 1/K - 0,0062 1/K).
0,0137·ΔHvap = 0,573 J/mol.
ΔHvap = 41,82 J.
Answer: sphere interaction
The ocean absorbing excess carbon dioxide from the atmosphere in order to maintain balance is an example of sphere interaction. The different spheres like lithosphere, hydrosphere, atmosphere, and geosphere interact with one another naturally to achieve equilibrium in the environment.