![\bf \lim\limits_{x\to \infty}~\left( \cfrac{1}{8} \right)^x\implies \lim\limits_{x\to \infty}~\cfrac{1^x}{8^x}\\\\[-0.35em] ~\dotfill\\\\ \stackrel{x = 10}{\cfrac{1^{10}}{8^{10}}}\implies \cfrac{1}{8^{10}}~~,~~ \stackrel{x = 1000}{\cfrac{1^{1000}}{8^{1000}}}\implies \cfrac{1}{8^{1000}}~~,~~ \stackrel{x = 100000000}{\cfrac{1^{100000000}}{8^{100000000}}}\implies \cfrac{1}{8^{100000000}}~~,~~ ...](https://tex.z-dn.net/?f=%5Cbf%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Cleft%28%20%5Ccfrac%7B1%7D%7B8%7D%20%5Cright%29%5Ex%5Cimplies%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Ccfrac%7B1%5Ex%7D%7B8%5Ex%7D%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bx%20%3D%2010%7D%7B%5Ccfrac%7B1%5E%7B10%7D%7D%7B8%5E%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B10%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%201000%7D%7B%5Ccfrac%7B1%5E%7B1000%7D%7D%7B8%5E%7B1000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B1000%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%20100000000%7D%7B%5Ccfrac%7B1%5E%7B100000000%7D%7D%7B8%5E%7B100000000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B100000000%7D%7D~~%2C~~%20...)
now, if we look at the values as "x" races fast towards ∞, we can as you see above, use the values of 10, 1000, 100000000 and so on, as the value above oddly enough remains at 1, it could have been smaller but it's constantly 1 in this case, the value at the bottom is ever becoming a larger and larger denominator.
let's recall that the larger the denominator, the smaller the fraction, so the expression is ever going towards a tiny and tinier and really tinier fraction, a fraction that is ever approaching 0.
Given that diameter of a paint can is 6.2483.
And we are asked to find width of four paint cans on a shelf.
Since we can only place paint cans adjacent to each other on a shelf, Total width will be addition of diameters of four paint cans.
Hence width = 6.2483+6.2483+6.2483+6.2483
= 24.9932 ≈ 24.99 inches( rounded off to nearest hundredth of an inch)
Hence correct option is 'A'.
Answer:
50%
Step-by-step explanation:
50/100 x 275 = 137.5
137.5 = 275
First:
Subtract 5 on each side of the equals sign to cancel it out. You should get 13x=144.
Next:
Divide 13 from each side of the equals sign to get x by itself.
Answer:
X=11.0769230769. You may need to round it up to 11.08 or 11.1 depending on how your teacher normally has you answer