Answer:
2115 = 9:15 PM
0830 = 8:30 AM
Step-by-step explanation:
12 - hour conversion.
Hi student, let me help you out! :)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We are asked to simplify the expression
.

That's exactly what we need to do - combine like terms.
So, we subtract:

Which gives us:

Hope it helps you out! :D
Ask in comments if any queries arise.
#StudyWithBrainly
~Just a smiley person helping fellow students :)
115*20=2300.
50*5=250
First mechanic 20 hours
Second mechanic 5 hours
Answer:
A tree with a height of 6.2 ft is 3 standard deviations above the mean
Step-by-step explanation:
⇒
statement: A tree with a height of 5.4 ft is 1 standard deviation below the mean(FALSE)
an X value is found Z standard deviations from the mean mu if:

In this case we have: 

We have four different values of X and we must calculate the Z-score for each
For X =5.4\ ft

Therefore, A tree with a height of 5.4 ft is 1 standard deviation above the mean.
⇒
statement:A tree with a height of 4.6 ft is 1 standard deviation above the mean.
(FALSE)
For X =4.6 ft

Therefore, a tree with a height of 4.6 ft is 1 standard deviation below the mean
.
⇒
statement:A tree with a height of 5.8 ft is 2.5 standard deviations above the mean
(FALSE)
For X =5.8 ft

Therefore, a tree with a height of 5.8 ft is 2 standard deviation above the mean.
⇒
statement:A tree with a height of 6.2 ft is 3 standard deviations above the mean.
(TRUE)
For X =6.2\ ft

Therefore, a tree with a height of 6.2 ft is 3 standard deviations above the mean.
Answer:
Θ = 46°
Step-by-step explanation:
the angle between a tangent and a radius at the point of contact is 90° , so
∠ ABO = 90°
since OB = OD ( radii of circle ) then Δ BOD is isosceles and
∠ OBD = ∠ ODB = 22°
the exterior angle of a triangle is equal to the sum of the 2 opposite interior angles.
∠ AOB is an exterior angle of the triangle , then
∠ AOB = 22° + 22° = 44°
the sum of the 3 angles in Δ AOB = 180° , then
Θ + 44° + 90° = 180°
Θ + 134° = 180° ( subtract 134° from both sides )
Θ = 46°