1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
12

Can you show me the work to get this answer write two expressions that have a gcf of 8xy

Mathematics
1 answer:
BigorU [14]3 years ago
5 0
1) Expression 1: 16x^3 y

2) Expression 2: 24 xy^5

Procedure:

1) find the greatest common factor of the coefficients, 16 and 24:

16 = 2^4

24 = (2^3)*3

=> greatest common factor = 2^3 = 8

2) find the greatest common factor of x^3 y and xy^5

That is the common letters each raised to the lowest power:

=> xy

3) Then, the result is 8xy


You might be interested in
What is the volume of the pyramid? 11Two-thirds cm3 43Three-fourths cm3 58One-third cm3 87One-half cm3
Reptile [31]

Answer:c

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
TIMED PLEASE HURRY HELP WITH 2 EASY QUESTIONS
Alex_Xolod [135]
<h2>                         Question # 1</h2><h2>Which statements are true?</h2><h2 /><h3><u>Analyzing and solving the first statement:</u></h3>
  • 4g^2-g=g^2\left(4-g\right)

Solving the expression

4g^2-g

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

g^2=gg

So,

4gg-g

\mathrm{Factor\:out\:common\:term\:}g

g\left(4g-1\right)

So,

4g^2-g:\quad g\left(4g-1\right)

Therefore, the statement 4g^2-g=g^2\left(4-g\right) is NOT CORRECT.

<h3><u>Analyzing and solving the second statement:</u></h3>
  • 35g^5-25g^2=\:5g^2\left(7g^3-5\right)

Solving the expression

35g^5-25g^2

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

g^5=g^3g^2

So,

35g^3g^2-25g^2

\mathrm{Rewrite\:}25\mathrm{\:as\:}5\cdot \:5

\mathrm{Rewrite\:}35\mathrm{\:as\:}5\cdot \:7

5\cdot \:7g^3g^2-5\cdot \:5g^2

\mathrm{Factor\:out\:common\:term\:}5g^2

5g^2\left(7g^3-5\right)

So,

35g^5-25g^2=\:5g^2\left(7g^3-5\right)

Therefore, the statement 35g^5-25g^2=\:5g^2\left(7g^3-5\right) is CORRECT.

<h3><u>Analyzing and solving the third statement:</u></h3>
  • 24g^4+18g^2=\:6g^2\left(4g^2+3g\right)
<h3 />

Solving the expression

<h3>24g^4+18g^2</h3><h3>24g^2g^2+18g^2</h3><h3>\mathrm{Rewrite\:}18\mathrm{\:as\:}6\cdot \:3</h3><h3>\mathrm{Rewrite\:}24\mathrm{\:as\:}6\cdot \:4</h3><h3>6\cdot \:4g^2g^2+6\cdot \:3g^2</h3><h3>\mathrm{Factor\:out\:common\:term\:}6g^2</h3><h3>6g^2\left(4g^2+3\right)</h3>

So,

<h3>24g^4+18g^2=6g^2\left(4g^2+3\right)</h3>

Therefore, the statement 24g^4+18g^2=\:6g^2\left(4g^2+3g\right)  is CORRECT.

<h3><u>Analyzing and solving the fourth statement:</u></h3>
  • 9g^3+12=\:3\left(3g^3+4\right)

Solving the expression

9g^3+12

\mathrm{Rewrite\:}12\mathrm{\:as\:}3\cdot \:4

\mathrm{Rewrite\:}9\mathrm{\:as\:}3\cdot \:3

3\cdot \:3g^3+3\cdot \:4

\mathrm{Factor\:out\:common\:term\:}3

3\left(3g^3+4\right)

So,

9g^3+12=\:3\left(3g^3+4\right)

Therefore, the statement 9g^3+12=\:3\left(3g^3+4\right) is CORRECT.

<h2>                         Question # 2</h2><h2>Which expressions are completely factored?</h2>

<u>Solving first expression</u>

Considering the expression

  • 30a^6-24a^2

30a^6-24a^2

30a^4a^2-24a^2

\mathrm{Rewrite\:}24\mathrm{\:as\:}6\cdot \:4

\mathrm{Rewrite\:}30\mathrm{\:as\:}6\cdot \:5

6\cdot \:5a^4a^2-6\cdot \:4a^2

\mathrm{Factor\:out\:common\:term\:}3a^2

3a^2\left(10a^4-8\right)

Thus, the expression 30a^6-24a^2=3a^2\left(10a^4-8\right)\: is completely factored.

<u>Solving second expression</u>

Considering the expression

  • 12a^3-8a

12a^3-8a

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

a^3=a^2a

So,

12a^2a-8a

\mathrm{Rewrite\:}8\mathrm{\:as\:}4\cdot \:2

\mathrm{Rewrite\:}12\mathrm{\:as\:}4\cdot \:3

4\cdot \:3a^2a-4\cdot \:2a

\mathrm{Factor\:out\:common\:term\:}4

4\left(3a^3-2a\right)

Thus, the expression 12a^3-8a=\:4\left(3a^3-2a\right) is completely factored.

<u>Solving third expression</u>

  • 16a^5-20a^3\:\:\:\:\:\:\:\:\:\:\:\:

16a^5-20a^3

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

a^5=a^2a^3

So,

16a^2a^3-20a^3

\mathrm{Rewrite\:}20\mathrm{\:as\:}4\cdot \:5

\mathrm{Rewrite\:}16\mathrm{\:as\:}4\cdot \:4

4\cdot \:4a^2a^3-4\cdot \:5a^3

\mathrm{Factor\:out\:common\:term\:}4a^3

4a^3\left(4a^2-5\right)

Thus, the expression 16a^5-20a^3\:=4a^3\left(4a^2-5\right) is completely factored.

<u>Solving fourth expression</u>

  • 24a^4+18

24a^4+18

\mathrm{Rewrite\:}18\mathrm{\:as\:}6\cdot \:3

\mathrm{Rewrite\:}24\mathrm{\:as\:}6\cdot \:4

6\cdot \:4a^4+6\cdot \:3

\mathrm{Factor\:out\:common\:term\:}6

6\left(4a^4+3\right)

Thus, the expression 24a^4+18=6\left(4a^4+3\right) is completely factored.

Keywords: expression, factoring

Learn more about expression factoring from brainly.com/question/14051207

#learnwithBrainly

8 0
3 years ago
n automobile manufacturer claims that its van has a 37.4 miles/gallon (MPG) rating. An independent testing firm has been contrac
JulsSmile [24]

Answer:

Then z(s) is out of the acceptance region, we reject H₀,  doubts of the independent testing firm are valids

Step-by-step explanation:

We will develop a Hypothesis Test ( a 2 tail test since the independent testing firm is interested in finding out  if there is an incorrect MPG rating from the manufacturer

Test Hypothesis :

Null hypothesis                             H₀            μ    =    μ₀

Alternative Hypothesis                Hₐ             μ    ≠    μ₀

Significance Level   α  = 0,05    α/2  =  0,025

z(c) for α/2   from z-table      z(c)  = - 1, 96   and by symmetry  z(c) = 1,96

Calculating  z(s)

z(s) =  ( μ  -  μ₀ ) / σ /√n

z(s) = ( 37,8 - 37,4 ) / 2,3 /√280

z(s) = 0,4 * 16,73 / 2,3

z(s) = 2,90

Comparison between z(c)  and  z(s)

z(s) > z(c)       2,90 > 1,96

Then z(s) is out of the acceptance region, we reject H₀,  doubts of the independent testing firm are valids

8 0
3 years ago
Trukkkkkkkkkk that hurt like a butt cheek on a stick
kiruha [24]
✨Vines vines vines vines vines vines vines✨
3 0
3 years ago
If the two triangles shown below are congruent, select the corresponding 1 point
nadya68 [22]

Answer:

SSS

Step-by-step explanation:

The two triangles both share a side (the middle line), and it is shown that the other lines are congruent to each other. So all 3 sides are congruent, meaning SSS is the postulate that proves this.

4 0
3 years ago
Other questions:
  • The value for the missing side is: 25. 4 5. None of these choices are correct.
    8·1 answer
  • Given the objective function C=3x−2y and constraints x≥0, y≥0, 2x+y≤10, 3x+2y≤18, identify the corner point at which the maximum
    10·1 answer
  • 8x-4y=16<br> -5x-5y=5<br> Graph the both
    8·2 answers
  • There are 2 black balls, one red ball and one green ball, identical in shape and size. How many different linear arrangements ca
    15·1 answer
  • Mrs. Torres is mailing a package that weighs 12.5 pounds. The post office charges by the
    11·1 answer
  • (a) What is the actual cost incurred in producing the 1051st and the 2191st disc? (Round your answers to the nearest cent.)
    6·1 answer
  • The length from the center of a wind turbine to the tip of one of its blades measures 32 meters. What is the approximate distanc
    15·1 answer
  • A bank account has a beginning balance of $460.00. After 6 months, the balance in the account has increased to
    9·1 answer
  • What is the slope of a line that is perpendicular to the line y = 1/6 x + 4? The slope of the line is .
    10·1 answer
  • Find the cube root of each of the following numbers by prime factorisation method.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!