Answer:
Jenny will have 3 apples
Step-by-step explanation:
5-2=3
Answer:
A tree with a height of 6.2 ft is 3 standard deviations above the mean
Step-by-step explanation:
⇒
statement: A tree with a height of 5.4 ft is 1 standard deviation below the mean(FALSE)
an X value is found Z standard deviations from the mean mu if:

In this case we have: 

We have four different values of X and we must calculate the Z-score for each
For X =5.4\ ft

Therefore, A tree with a height of 5.4 ft is 1 standard deviation above the mean.
⇒
statement:A tree with a height of 4.6 ft is 1 standard deviation above the mean.
(FALSE)
For X =4.6 ft

Therefore, a tree with a height of 4.6 ft is 1 standard deviation below the mean
.
⇒
statement:A tree with a height of 5.8 ft is 2.5 standard deviations above the mean
(FALSE)
For X =5.8 ft

Therefore, a tree with a height of 5.8 ft is 2 standard deviation above the mean.
⇒
statement:A tree with a height of 6.2 ft is 3 standard deviations above the mean.
(TRUE)
For X =6.2\ ft

Therefore, a tree with a height of 6.2 ft is 3 standard deviations above the mean.
Answer:
(x + 1 s 1) n (x + 12 1)
(x +1<1) n (x + 1 > 1)
Step-by-step explanation:
Just simplify each the statements.
Then compare and and see if the statements are contradictory and therefore FALSE, if so, then there is no solution.
(x + 1<-1) n (x + 1< 1)
(x <-2) n (x < 0) which is true, so there is a solution.
(x + 1 s 1) n (x + 12 1)
this doesn't make sense so there is no solution.
(x +1<1) n (x + 1 > 1)
(x < 0) n (x > 0)
This is not possible, the statements are contradictory and therefore FALSE, so there is no solution.
Answer:
○ A) 21 ft.²
Step-by-step explanation:

I am joyous to assist you anytime.
Answer:
Step-by-step explanation:
Xét tam giác DAB có: P là trung điểm AD, M là trung điểm AB
=> MP là đường trung bình của tam giác DAB => MP//BD và MP=
BD (1)
Xét tam giác DBC có: N là trung điểm DC, Q là trung điểm BC
=> QN là đường trung bình của tam giác DBC => QN//BD và QN=
BD (2)
Từ (1) và (2) => vecto MP song song cùng chiều với vecto QN
và độ dài MP = độ dài QN =
BD
=> vecto MP = vecto QN
Tương tự xét các tam giác DAC và tam giác ABC => vecto MQ = vecto PN