Answer:
the slope that is perpendicular to this line is -3/2
Answer:
The correct option is;
21 ft
Step-by-step explanation:
The equation of the parabolic arc is as follows;
y = a(x - h)² + k
Where the height is 25 ft and the span is 40 ft, the coordinates of the vertex (h, k) is then (20, 25)
We therefore have;
y = a(x - 20)² + 25
Whereby the parabola starts from the origin (0, 0), we have;
0 = a(0 - 20)² + 25
0 = 20²a + 25 → 0 = 400·a + 25
∴a = -25/400 = -1/16
The equation of the parabola is therefore;

To find the height 8 ft from the center, where the center is at x = 20 we have 8 ft from center = x = 20 - 8 = 12 or x = 20 + 8 = 28
Therefore, plugging the value of x = 12 or 28 in the equation for the parabola gives;
.
Answer:
Jess used 40 blocks in total.
Step-by-step explanation:
First stack: 8 blocks
Second stack: First stack + 4 = 8 + 4 = 12 blocks
Third stack: Second stack + 8 = 12 + 8 = 20 blocks
Total number of blocks: First stack + Second stack + Third stack = 8 + 12 + 20 = 40 blocks
Answer:
Outside of probability, Pascal's Triangle is also used for: Algebra, where coefficient of polynomials can be used to find the numbers in Pascal's triangle. Pascal's Triangle is an arithmetical triangle you can use for some neat things in mathematics.
The entries in Pascal's triangle are actually the number of combinations of N take n where N is the row number starting with N = 0 for the top row and n is the nth number in the row counting from left to right where the n = 0 number is the first number.
The mathematical formula for the number of combinations without repetition is N!/(n!(N-n)!).
Step-by-step explanation:
To construct Pascal's triangle, start with a 1. Then, in the next row, write a 1 and 1. It's good to have spacing between the numbers. In the third row, we have 1 and 1 on the outside slopes. The 2 comes from adding the two numbers above and adjacent. Thus, we are adding the number on the left, 1, with the number on the right, 1, to get 1 + 1 = 2.
In the next row, the 3 comes from adding the 1 and the 2. This particular Pascal's triangle stopped at 1 5 10 10 5 1, but we could have continued indefinitely.
Hi,

Domain of (fog)(x) is R \ {13} =(-oo 13[ U ]13 +oo)