We define the probability of a particular event occurring as:

What are the total number of possible outcomes for the rolling of two dice? The rolls - though performed at the same time - are <em>independent</em>, which means one roll has no effect on the other. There are six possible outcomes for the first die, and for <em>each </em>of those, there are six possible outcomes for the second, for a total of 6 x 6 = 36 possible rolls.
Now that we've found the number of possible outcomes, we need to find the number of <em>desired</em> outcomes. What are our desired outcomes in this problem? They are asking for all outcomes where there is <em>at least one 5 rolled</em>. It turns out, there are only 3:
(1) D1 - 5, D2 - Anything else, (2), D1 - Anything else, D2 - 5, and (3) D1 - 5, D2 - 5
So, we have

probability of rolling at least one 5.
A. Alright, we want to multiply one equation by a constant to make it cancel out with the second. Since the first equation has a "blank" y, let's multiply the first equation by <em>2</em>.
3x-y=0 → 2(3x-y=0) = 6x - 2y = 0
5x+2y=22
The answer for this part would be: 6x - 2y = 0 and 5x + 2y = 22
B. So now we combine them:
6x - 2y = 0
+ + +
5x + 2y = 22
= = =
11x + 0 = 22 ← The answer
C. Now that we have the equation 11x = 22, we solve for x
11x = 22 ← Divide both sides by 11
x = 2 ← The answer
D. Now that we have x=2, we plug that back in to 5x+2y=22 and solve for y:
5(2)+2y = 22
10 + 2y = 22
2y = 12
y = 6
<u>Therefore, the solution to this problem is x = 2 and y = 6</u>
Well , in 3 hours , the amount of the tank that will be filled with pipe A = 8,000 x 3 = 24,000 L
Pipe could empty that 24,000 L in 3 hours.
So the capacity is around 6 - 8 L . .. . we need additional information to find out for sure
hope this helps
4n+7−(7n−8)
=4n+7+−1(7n−8)
=4n+7+−1(7n)+(−1)(−8)
=4n+7+−7n+8
Combine Like Terms
=4n+7+−7n+8
=(4n+−7n)+(7+8)
=−3n+15
Hi there!
»»————- ★ ————-««
I believe your answer is:

»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻

⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.