Given:
The expression is
![\sqrt[3]{48}=\sqrt[3]{8\cdot \_\_}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D%5Csqrt%5B3%5D%7B8%5Ccdot%20%5C_%5C_%7D%3D)
To find:
The simplified form of the expression.
Solution:
We have,
![\sqrt[3]{48}=\sqrt[3]{8\cdot \_\_}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D%5Csqrt%5B3%5D%7B8%5Ccdot%20%5C_%5C_%7D%3D)
The expression
can be written as
![\sqrt[3]{48}=\sqrt[3]{8\cdot 6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D%5Csqrt%5B3%5D%7B8%5Ccdot%206%7D)
![[\because \sqrt[3]{ab}=\sqrt[3]{a}\sqrt[3]{b}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Csqrt%5B3%5D%7Bab%7D%3D%5Csqrt%5B3%5D%7Ba%7D%5Csqrt%5B3%5D%7Bb%7D%5D)
![\sqrt[3]{48}=2\cdot \sqrt[3]{6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D2%5Ccdot%20%5Csqrt%5B3%5D%7B6%7D)
![\sqrt[3]{48}=2\sqrt[3]{6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D2%5Csqrt%5B3%5D%7B6%7D)
Therefore,
.
<em><u>Hey</u></em><em><u>!</u></em><em><u>!</u></em>
<em><u>They</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>adjacent</u></em><em><u> </u></em><em><u>angles</u></em><em><u>.</u></em>
<em><u>Both</u></em><em><u> </u></em><em><u>angles</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>common</u></em><em><u> </u></em><em><u>side</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>vertex</u></em><em><u>.</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
70° , 70°
Step-by-step explanation:
The 2 angles are corresponding and are congruent, then
23x + 1 = 4 + 22x ( subtract 22x from both sides )
x + 1 = 4 ( subtract 1 from both sides )
x = 3
Then the angles are
23x + 1 = 23(3) + 1 = 69 + 1 = 70°
4 + 22x = 4 + 22(3) = 4 + 66 = 70°
Answer:
5x³ - 2x² - 5x + 8
Step-by-step explanation:
[ Refer to the attachment ]
Answer:
y = 6
x = 2
Step-by-step explanation:
rearrange the first equation in terms of x
x = (y - 2)/2
substiute x in the second equation
y = -5[(y-2)/2] +16
Now simpilify and solve for y
y = (-5y + 10)/2 +16
y = -5/2y + 5 + 16
y + 5/2y = 5 + 16
3.5y = 21
y = 6
Now substitue y in the first equation to solve for x
x = (6 - 2)/2
x = 2